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Abstract

The European Union’s Solvency II regulatory framework, which is cur-

rently under development, specifies procedures and parameters for determin-

ing solvency capital requirements (SCR) for insurance companies. The pro-

posed standard SCR calculations involve two steps. First, the risks of all

individual business units, expressed in terms of Value–at–Risk (VaR), are mea-

sured and then, in a second step, aggregated to the company’s overall SCR,

using a so–called Standard Formula provided by the regulator. The Standard

Formula has two inputs: the individual VaRs of the risk components and their

correlations. The appropriate calibration of these input parameters has been

the purpose of various Quantitative Impact Studies that have been conducted

during recent years.

In this paper, we demonstrate that the derivation of the calibration pa-

rameters for the equity–risk module—with about 25%, on average, the most

significant risk component of insurance companies’ total SCR—is seriously

flawed and gives rise to spurious and highly erratic parameters. As a conse-

quence, an implementation of the Standard Formula with the currently pro-

posed calibration settings is likely to produce inaccurate, erratic and biased

capital requirements for equity–risk and, thus, to defeat the purpose of the

EU’s Solvency II Directive.
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1 Introduction

In June 2007 the European Commission (European Commission, 2007a) proposed a

revision of the insurance law in the European Union with the objective1

“... to ensure the financial soundness of insurance undertakings, and

in particular that they can survive difficult periods. This is to protect

policyholders (consumers, businesses) and the stability of the financial

system as a whole.”

To achieve this, the Solvency II Directive (European Parliament, 2009) aims at

linking regulatory and economic capital more closely and improving risk manage-

ment practices, i.e., the identification, measurement and control of risks. In addition

to pure insurance risks, Solvency II also includes Solvency Capital Requirements

associated with market risk, credit risk and operational risk. Moreover, the EU

Directive specifies in detail the kind of losses the capital requirements need to be

capable of absorbing:2

“... the Solvency Capital Requirement should be determined as the eco-

nomic capital to be held by insurance and reinsurance undertakings in

order to ensure that ... those undertakings will still be in a position, with

a probability of at least 99.5%, to meet their obligations to policy holders

and beneficiaries over the following 12 months. That economic capital

should be calculated on the basis of the true risk profile of those undertak-

ings, taking account of the impact of possible risk-mitigation techniques,

as well as diversification effects.”

In other words, the Solvency Capital Requirement (SCR) represents the amount of

own funds that would potentially be consumed by unexpected loss events, whose

probability of occurrence within a one–year period is 0.5% or less. This concept

equates the SCR directly to the Value–at–Risk (VaR) risk measure for the 99.5%

confidence level and a time horizon of one year. Moreover, the Directive requires

that the determination of risk capital takes diversification effects into account

To determine its SCR, an insurer can use the Standard Formula and parameters

provided by the regulator, use its own internal model, or a use combination of

the two. The Standard Formula has a modular structure and is to be applied in

a stepwise, bottom–up procedure. First, capital charges are derived for each risk

(sub–)module which are then, step–by–step, aggregated to the overall SCR. To

1European Commission (2007b), §1.
2European Parliament (2009), §65.
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allow for diversification effects among the risk components, their correlations enter

the calculations. The following main risk modules are considered:3

1. market risk
2. counterparty risk
3. life underwriting risk
4. health underwriting risk
5. non–life underwriting risk

According to the report (EIOPA, 2011) on the Fifth Quantitative Impact Study

(QIS5), initiated by the Committee of the European Insurance and Occupational

Pension Supervisors (CEIOPS),4 the market–risk module, having a weight of more

than 60% of overall SCR, is the most important module. The market–risk module

consists of several submodules, of which, the equity–risk is the largest submodule.5

It makes up about 40% of market risk and, thus, contributes about 25% to the

overall SCR.6

In the analysis below, we focus on equity risk; but it is to be expected that the

findings may also apply to other submodules within the market–risk module.

The Basic Solvency Capital Requirements (BSCR) includes the five main modules

listed above. They are aggregated, allowing for diversification effects, by use of the

Standard Formula:

BSCR =

√√√√
5∑

i=1

5∑

j=1

ρij × SCRi × SCRj, (1)

where SCRi represents the ith risk module’s capital charge, which is given by the

99.5% VaR of that module; and ρi,j denotes the correlation between the risk modules

i and j. If a main module is segregated into submodules, the latter are aggregated,

analogous to the Standard Formula (1), to obtain the main module’s SCR from the

submodules’ SCRs.

The Standard Formula will play a crucial role in future regulation and manage-

ment of insurers’ risk as, for reasons of simplicity and cost efficiency, it will be fully

or partially adopted by most insurance companies. Only for large and/or “sophisti-

cated” companies will it be efficient to develop an internal model. But even in this

case, the Standard Formula will, in one way or another, represent a kind of anchor

for any (partial) internal model. Therefore, a proper calibration of the input param-

eters entering the Standard Formula, i.e., risk–specific SCR factors and correlations,

are of ultimate importance to ensure a sound regulatory framework.

3These five modules make up the Basic SCR. By adding the SCR of the sixth main module,

the operational–risk module, to the Basic SCR (without allowing for any diversification effects),

one obtains the company’s overall SCR.
4See CEIOPS (2010).
5The other submodules are: interest rate risk, currency risk, property risk, spread risk, and

concentration risk.
6See Graph 11 in EIOPA (2011) for the relative weights of the individual risk components.
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In the following, focusing on the equity–risk submodule, we will demonstrate that

the QIS5 calibration procedure for risk assessments leads to SCR risk factors and

correlations that are “spurious” and far from reliable. In present context, the expres-

sion “spurious correlation” refers to the situation, where the observed correlation

between two variables is not genuine, but the result of “... the special case in which

a correlation is not present in the original observations but is produced by the way

the data are handled;” see Voigt (2005).

It turns out that the annualization procedure, transforming daily return data into

annual returns, causes the QIS calibration parameters to be distorted. The chosen

annualization strategy has serious implications as it affects risk and dependence

structures in the data used for calibration. For one, it induces spurious depen-

dence patterns, which are not genuinely present in the observed data. Secondly,

it may alter or destroy dependence patterns that factually determine the riskiness

of individual asset classes. Specifically, two types of dependencies matter in risk

assessment: (i) temporal or dynamic dependencies, describing an asset’s return and

risk behavior over time; and (ii) cross–sectional dependencies, i.e., the relationship

between assets at a given point in time. The dependencies along both dimensions

need to be understood and properly modeled in order to reliably assess the risk

of equity portfolios. It turns out that the currently proposed Solvency II calibra-

tions equity risk obstruct both the understanding and modeling of risk and, thus,

obfuscate insurers’ equity–risk assessment.

Our findings differ from the criticism against specific QIS–calibration choices that

has been raised before7 in that it is more fundamental, calling virtually all calibration

parameters specified for the equity–risk module into question, as they are largely a

product of chance.

The organization of this paper follows the two possible dimensions dependencies

can take affect, namely temporal and cross–sectional dependencies. After review-

ing the annualization procedure chosen for QIS calibrations, Section 3 investigates

consequences for return and risk dynamics that arise from the chosen annualization

procedure, and Section 4 those for the dependence among asset classes. Section 5

summarizes the implications of our findings.

2 Rolling–window Annualization

Solvency II calibrations for the equity–risk module are designed for assessing the risk

of various asset classes assuming a one–year holding period. Therefore, all SCR or,

for that matter, VaR–calibrations refer to that horizon and, accordingly, the inputs

for the Standard Formula need to be VaRs and correlations associated with annual

returns. As a consequence, a straightforward calibration strategy would preferably

7See, for example, EIOPA (2011).
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rely on annual return data for deriving the inputs for the Standard Formula. How-

ever, most of the asset classes considered in the equity–risk module have a rather

short history, so that the analysis would rest on only very few annual return observa-

tions. Specifically, having daily data histories ranging from about 8 to almost to 40

years,8 it is not possible to assess risks associated with once–in–two–hundred–years

events as the VaR99.5 measure implies. Given 8 to 40 non–overlapping annual return

observations, we cannot directly derive VaR–estimates at a 99.5% confidence level

nor the type of correlation, namely tail correlations, employed in QIS calibrations.

To still make use of historical market data, QIS calibrations employ rolling one–

year data–windows to obtain annual returns at a daily frequency. Letting Pt denote

the price of an asset at day t and w the window length (measured in trading days)9

for which the multi–period return, denoted by Rw
t , is to be computed, we have

Rw
t =

Pt − Pt−w

Pt−w
, w ≥ 1, t = w + 1, w + 2, . . . . (2)

Given, say 10 years of daily return data, the rolling–window approach gives rise

to 9 years of annual return observations at a daily frequency. However, the annual

returns that are generated in this manner overlap to a large extent. Annual returns

computed for two consecutive days have more than 99% of daily return informa-

tion in common and differ only by two daily return data that are not in common.

Clearly, the use of non–overlapping annual return data is essential, because only they

represent independent pieces of information about the underlying data generating

process. CEIOPS analysts were well aware of this problem and write:10

“There is a balance to be struck between an analysis based on the richest

possible set of relevant data and the possibility of distortion resulting from

autocorrelation. In this case, we have chosen to take a rolling one-year

window in order to make use of the greatest possible quantity of relevant

data .”

As will be demonstrated below, the “distortions” induced by the rolling one–year

window approach are not as inconsequential as the above quotation may suggest.

The most damaging implication is that the approach tends to induce spurious depen-

dence patterns, both over time and across assets, which, in turn, produce artifactual

risk structures.
8To compute correlations among the asset–class indices used in the sub–module equity risk there

are about 40 years of daily observations for the asset pair Global Equity/Commodities, about 15 for

the pairs Global Equity/Private Equity and Global Equity/Emerging–Markets Equity, and about

8 for the pair Global Equity/Hedge Fonds.
9In the simulations discussed below, we choose window lengths ranging from w = 1, to indicate

no temporal aggregation, and w = 259, representing an aggregation over one calendar year. The

latter corresponds to the average number of trading days recorded for the MSCI World index,

which plays a prominent role in the Solvency II equity–risk calibrations.
10See §3.56 in CEIOPS (2010).
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Before entering this discussion, a remark on the notation adopted below is in

order. Returns calculated via (2) are referred to as discrete returns. For reasons of

analytical tractability, empirical and theoretical analyses in finance typically employ

approximations in form of continuous returns, defined by rwt = logPt − logPt−w.

However, for annual returns, this approximation may be poor.11 Throughout the

paper, we denote discrete returns by upper case Rt and continuous returns by lower

case rt. Whenever we examine theoretical issues analytically, we will resort to the

continuous approximation, rt. All simulations, however, are conducted with exact,

discrete returns, Rt.

3 Annualization and Temporal Dependence

Our analyses of the impact on temporal dependence when conducting equity–risk

calibrations with annualized rolling–window returns are threefold. We, first, inves-

tigate the consequences of the chosen annualization for the dynamic properties of

the returns and, then, for the volatility of asset returns. Finally, we investigate the

implications on the calibration of the SCR stress factors which enter the Standard

Formula.

3.1 Return Dynamics

The determination of VaR values from historical rolling–window return data may, at

first sight, seem reasonable, as this amounts to searching for worst–case outcomes

over all possible one–year holding periods in the sample at hand. However, con-

struction of a daily series of annual returns via overlapping rolling–windows causes

the resulting return series to be highly autocorrelated. The autocorrelation between

consecutive (continuous) multi–period returns, denoted by rwt and rwt−1, becomes

stronger as the length of the rolling window, w, increases, so that

Corr(rwt , r
w
t−1)

w→∞−→ +1. (3)

As w increases, the times series rwt , t = 1, 2, . . ., approaches a random–walk–like

process and, thus, approaches nonstationarity. This, in turn, implies that the joint

distribution of a set of consecutive observations on rwt tends to vary over time. A

random–walk, say xt, in its purest form is generated by the stochastic first–order

difference equation

xt = axt−1 + ut, (4)

with a = 1, and ut being a white–noise series, i.e., an independent and identically

distributed (iid) time series with E(ut) = 0, E(u2
t ) = σ2 < ∞ and E(usut) = 0, for

s 6= t. Process (4) with a = 1 is also referred to as a unit-root process.12

11See Appendix A for a discussion on this issue.
12The term “unit root” is used, because the autoregressive polynomial has a root of size one.
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Expressing the rolling–window returns, rwt , t = 1, 2, . . . , T , by the first–order

process

rwt = arwt−1 + vt, (5)

the ordinary least–squares (OLS) estimator of autoregressive coefficient, âT , ap-

proaches (w − 1)/w as the sample size, T , grows, i.e.,13

âT
T→∞−→ w − 1

w
. (6)

It is well known that temporal and cross–sectional correlation analysis with unit–

root processes will produce spurious and highly erratic results due to the pecu-

liar dependence patterns that may arise.14 To investigate the extent to which

rolling–window annualization induces autocorrelation in finite samples, we conduct

a Monte Carlo simulation and generate 10,000 daily (continuous) return series, rt,

t = 1, 2, . . . , T , of length T = 2, 590 and T = 5, 180, with returns being independent

and identically normally distributed, i.e., rt
iid∼ N(0, 1). The chosen sample sizes, T ,

corresponds to about 10 and 20 years of daily observations, respectively. From each

of the series we compute (discrete) rolling–window returns, Rw
t , with the window

length, w, assuming values w ∈ {5, 22, 65, 130, 259}.15 These values correspond more

or less to aggregating daily returns to weekly, monthly, quarterly, semi–annual, and

annual returns. By letting the window length grow, we can assess how the severity

of the problems increases as the aggregation level grows. We, then, estimate the

first–order autoregressive coefficient and, using the ADF–test (Dickey and Fuller,

1979), formally test for the presence of a unit–root.

The test results are summarized in Table 1, where the first column states the

length of the aggregation window; Column 2 indicates the asymptotic value of the au-

toregressive (AR) coefficient, â in (6), associated with that window length; Columns

3 and 4 show the mean values of the 10,000 AR–coefficient estimates for the two

sample sizes, respectively. The last two columns report the means of the ADF–

statistics. The critical values of the ADF–statistic for the 99%, 95% and 90% levels

are -3.4583, -2.8710, and -2.5937, respectively. If the value of the ADF–statistic lies

above the critical value, we cannot reject the null hypothesis of a unit root.

The results in Table 1 indicate that—in line with the asymptotic counterpart—

the estimated first–order AR–coefficient quickly increases as the window lengths, w,

exceeds unity. Weekly aggregation produces a value of about 0.80, and monthly

aggregation already 0.95. With a mean AR–coefficient of 0.996, annual aggregation

produces a nearly perfect random walk. According to the ADF test, for the one–

year rolling–window aggregation (i.e., w = 259) and the 10–year sample, we cannot

reject the null hypothesis of a unit root at any conventional significance level. For

the larger, 20–year sample, we can reject at the 90% and 95% levels, but not at the

13See Appendix B for details.
14See Granger and Newbold (1974). We will return to this issue in Section 4 below.
15See Appendix A for a description of the simulation of discrete multi–period returns.
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Table 1: Asymptotic and simulated near–unit–root behavior of rolling–window re-

turns

AR Coefficient ADF Statistic

Window Length Asymptotic 10 years 20 years 10 years 20 years

1 0 0.0002 0.0002 -20.7662 -29.3696

5 0.8 0.7997 0.7997 -13.6088 -19.2407

22 0.9545 0.9539 0.9542 -8.2773 -11.6922

65 0.9846 0.9841 0.9843 -4.6196 -6.5061

130 0.9923 0.9917 0.9920 -3.2865 -4.5858

259 0.9961 0.9955 0.9958 -2.3976 -3.2892

99% level. These findings suggest that for large samples, i.e., 20 years or more, a

formal test is likely to reject the presence of a unit root. The outcome of the test

is, however, merely a question of sample size. The nature of the rolling–window

return series will be determined by the value of w or, for that matter, the implied

AR coefficient. A value of w = 259 turns out ot induce strong temporal dependence

and to distort calibration exercises.

To illustrate this, we simulate 40 years of daily return data with a normally

distributed white–noise structure and perform rolling–window annualization. The

top graph in Figure 1 shows a typical sample autocorrelation function (SACF) for

the two series, i.e., Corr(Rt, Rt−k) and Corr(R259
t , R259

t−k), k = 1, 2, . . . , 259. The

SACF for daily returns looks like what we expect from white noise: it is close to

zero for all lags and remains pretty much within the approximate 95% confidence

band. The SACF for the annualized returns resembles that of a unit–root series. It

starts near one, decays in a very slow and linear fashion, and is significantly different

from zero. The behavior of the SACFs is compatible with the scatter plots of the

two series (Figure 1, bottom).

These simulations demonstrate that rolling–window annualization alters the tem-

poral dependence structure of the returns in a substantial way. We will see in Section

3.3 that this is not just a theoretical problem, but it has practical consequences.

3.2 Volatility Dynamics

Rolling–window annualization not only affects the dynamics of the return series in

terms of autocorrelations. Also the volatility dynamics, i.e., risk dynamics, will

be altered. Volatility reflects the extent to which the return process can deviate

from its expected value; and variations in the return volatility reflect variations

in the riskiness of an asset. If volatility dynamics exhibit particular patterns over

time, prudent risk assessment needs to take these into account. If such patters are,

however, spurious and only the consequence certain data transformations rather

7
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than a genuine property of the underlying return process, efforts toward systematic

risk management will be seriously undermined.

The class of Generalized Autoregressive Conditional Heteroskedasticty (GARCH)

models, introduced by Engle (1982) and Bollerslev (1986), is the most common

model for approximating volatility dynamics of financial assets. To investigate the

impact of rolling–window annualization on volatility dynamics, we simulate a stan-

dard GARCH(1,1) model of the form

rt = µ+ σtut, (7)

σ2
t = α0 + α1(rt−1 − µ)2 + β1σ

2
t−1, (8)

where ut is a normally distributed white–noise process with E(ut) = 0 and Var(ut) =

1, for all t. For the simulation, we use the GARCH parameters we obtain when fitting

model (7)–(8) to the daily returns on the MSCI World Index,16 the index employed

in QIS5 to calibrate the asset class “global equity” within the equity–risk module.

Figure 2 plots the SACFs of the absolute daily and annualized returns, i.e.,

Corr(|Rt|, |Rt−k|) and Corr(|R259
t |, |R259

t−k|), derived from 40 years of simulated data.17

The resulting SACF of the absolute daily returns is typical of what we observe for

daily stock–index returns. There is a significant positive autocorrelation, starting at

about 0.2, which gradually declines, becoming more or less insignificant after a lag of

about 80 days. Thus, a (negative or positive) return shock carries over next period’s

volatility with a correlation of 0.2. The impact gradually vanishes for higher lags.

For absolute annualized returns, autocorrelations are much stronger. They start at

one and—though gradually decaying—stay much higher than those from absolute

daily returns, to become insignificant after about 170 days.

This shows that rolling–window annualization not only affects the temporal cor-

relation of a return series, but it also alters the risk dynamics by inducing much

stronger and more persistent temporal risk structures. Consequently, as will be

shown next, the calibration of stress factors for individual equity classes can pro-

duce extremely misleading results.

3.3 Consequences for Stress Factors

The presence of unit roots or near–unit roots has implications for both ingredients

of the Standard Formula. If a return series is nonstationary, past behavior will be a

poor indicator for its future behavior. As a consequence, even if the nature of the

return process remains unchanged, past VaR–statistics, for example, do not provide

an indication for those encountered in the future. To illustrate this, we conduct a

16Specifically, we use the daily MSCI World Price Index in U.S. dollar with the sample ranging

from January 4, 1972 to January 31, 2011.
17We use absolute rather than squared returns or unobserved conditional variance, because the

absolute returns tend to exhibit superior forecastability; see Granger and Sin (2000).
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Monte Carlo experiment, generating independent and identically distributed white–

noise data, rt
iid∼ N(0, 1). Specifically, we simulate two independent risk–factor series,

each of length 100 × 259 = 25, 900 observations, which corresponds to about 100

years of daily return data. We “annualize” these by computing discrete, one–year

rolling–window returns, leaving us with 99 × 259 overlapping annual return data

at a daily frequency. Figure 3 plots the daily and annualized returns of the two

simulated risk factors.18

As was to be expected, being generated by the same process, the two daily return

series look pretty much the same. Both annualized versions fluctuate between –50%

and +60%, but the locations of their peaks and troughs differ considerably.

We derive SCR estimates for the two simulated risk factors. We do this for

the daily and annualized discrete returns by computing day by day the histori-

cal VaR99.5–values—in other words, the 0.5%–quantiles of the series—using 10–year

rolling samples. Figure 4 shows that the VaRs for the daily returns are rather sta-

ble; they hover around the expected value (solid vertical line) and, with a range

from 2.3% to 2.8%, stay about 95% of the time within the 95% confidence bounds.19

Compared to this, VaR estimates from annualized returns vary dramatically. They

assume values from 16% to 46% during the 89 years sampled and deviate consid-

erably from the expected value.20 They deviate by more the than ten standard

deviations in either direction and stay for long periods far away from the expected

value, so that it is the exception rather than the rule that the estimates fall inside

the confidence band.

Given that the data were generated by independent iid white noise processes,

i.e., a processes without any temporal dependence structure, the VaR series for

annualized returns appears to exhibit distinctive patterns, which may be mistaken

for structurally inherent properties. Such SCR patterns may easily trigger specific

regulatory actions. Relying on historical VaR estimates from annualized returns, a

regulator could be tempted to set the stress factor for Asset 1 much too low during

years 29 through 81, just to ratchet it up to an excessively high level after year

88, while, at the same time, inappropriately lowering the stress factor for Asset 2.

Similarly disturbing is the fact that, although annual–return VaRs exhibit strong

persistence, they can change very abruptly. An insurance company’s reliance on

annual–return VaRs is bound to induce sudden and erratic portfolio adjustments,

without any change in the underlying market processes.

18By generating two independent series with identical properties we get an impression of the

variability of the dynamic properties due to rolling–window annualization. Moreover, below we will

use the two series to demonstrate the consequences of annualization on the dependence structure

across assets.
19Note that Figure 4 plots, against common convention, negative VaR–values to bring them

in line with CEIOPS’ usage. The sign switch is also compatible with the QIS–documentations’

convention of sign reversion.
20We obtain a sample of 89 years because we lose the initial 11 years of the sample, namely, one

year due to the annualization and ten years to calculate historical VaRs.
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From all this, it follows that a reliance on VaR estimates derived from one–year

rolling–window returns in regulatory or firms’ investment processes will produce

arbitrary outcomes.

4 Annualization and Asset Dependence

We now turn to the second ingredient of the Standard Formula (1), the correlation

parameters that need to be specified in order to aggregate the modules’ SCRs to

the next higher level.

The most common approach to measure and model dependencies between random

variables is to compute the Pearson correlation coefficient. Not only is it easily

computed, Pearson correlation is also the cornerstones of modern portfolio theory,

which underlies widely adopted risk–diversification concepts, including the Standard

Formula. However, Pearson correlation is a measure of linear dependence and,

thus not appropriate for nonlinear or non-Gaussian risk structures. This limitation

has been recognized when developing the Solvency II guidelines. To particularly

capture the joint behavior of risk factors in situations of extreme stress, Solvency

II calibrations are based on “tail correlations” rather than conventional Pearson–

correlation estimates.

Since Granger and Newbold (1974) it is well known that regression analysis in-

volving unit–root processes will produce spurious and highly erratic results.21 They

showed that estimated correlations between two independent random walks, say

xt = xt−1 + uxt and yt = yt−1 + uyt, with uxt and uyt being two independent white

noise series, can assume values far away from zero, even though the two series are

totally independent. Clearly, if this is the case, any correlation estimate between two

nonstationary times series is unreliable, and its use becomes highly questionable.

Figure 5 indicates the potential problem with assessing the dependence structure

between risk factors when the analysis relies on returns derived from rolling–window

annualization. The graph in the top half overlays the two independently simulated

series of annualized returns plotted in Figure 3. We observe periods where both

series seem to run pretty much in sync as well as periods where they are very

dissimilar. The scatter plots of the two risk factors in the bottom half of Figure 5

illustrate the difference in the dependence pattern for the daily and the annualized

return data. The former (bottom left) is very homogeneous and looks like what we

expect from uncorrelated data. In comparison, the scatter plot of the annualized

returns (bottom right) looks rather inhomogeneous and is somewhat splattered.

This spottiness arises from the fact that the apparent common behavior varies over

21Note that the findings for regression analysis between random–walk–type processes immedi-

ately carry over to correlation analysis. For a theoretical analysis of regressions with random–

walk–like processes see Phillips (1987).
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time.

An illustrative selection of subsamples of the bivariate annualized return series

is presented in Figure 6. The top panel shows the time series of the subsamples;

the bottom panel the corresponding scatter plots. We observe that, over fairly long

periods, the two series may exhibit rather strong positive (left and right panels)

but also strong negative dependency (center panel). The (sub–)sample correlations

for the three cases are 0.42 (left subsample), -0.65 (center) and 0.75 (right). Such

variations are typical for pairs of independent (near–)unit root process.

In the following, we investigate the implications of rolling–window annualization

on calibrating asset dependence. We begin with an introduction of the alternative

correlation concepts considered in Solvency II calibrations. Then, we investigate

three specific issues in more depth using, again, Monte Carlo simulations. First,

we take a closer look at the consequences of annualization on bias and efficiency of

the various correlation estimates. These analyses are simulation–based and limited

to normally distributed risk factors. In a second step, we examine to what extent

heavy–tailedness may affect the calibration of correlations. We do so by drawing

from bivariate t–distributions, such that we still remain in the elliptical world, jus-

tifying the use of the Standard Formula. Finally, we investigate how annualization

affects the tail–dependence properties between two equity classes.

4.1 Correlation Concepts

QIS calibrations for equity risk are based “tail correlation.” One approach to obtain

such estimates is to compute the conventional Pearson correlation from joint tail

observations. The joint tail observations associated with a given VaRα–level consist

of those return pairs for which both assets fall simultaneously below their respective

(1−α)–quantile. This approach, illustrated in Figure 7, is referred to as the “data–

cutting method” in CEIOPS (2010) and amounts to computing the conditional

correlation

ρDCQ
α = Corr(ri, rj | ri < −VaRα(ri), rj < −VaRα(rj)). (9)

The problem with the data-cutting approach is that, even for large data samples,

the number of data point entering the estimation may be extremely small. For

example, given 40 years of daily return data, i.e., about 10,000 observations, and

adopting the Solvency II convention of using the 99.5%–VaR, only observations

falling below the 0.5%–quantile matter. This leaves us with 50 tail–observations

for each of the assets. The intersection of these two subsets, data pairs where both

components fall below the 0.5%–quantile, defines the set of joint tail observations.

Depending on the degree of dependence, this will leave us with much fewer than 50

observations.

Figure 8 illustrates for a bivariate normal distribution how the portion of common
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tail observations quickly drops as we move away from perfect positive correlation.

For example, given a correlation of ρ = 0.75 and having observations on 10,000

return pairs, we can expect to have 14 joint tail observations. Despite the rare

luxury of having such a large data set, the tail–correlation estimate obtained by the

data–cutting approach will be based on an extremely small number of data points

and, thus, lead to highly unstable estimates.

Apart from the lack–of–data problem, focusing solely on tail, especially, far–tail

correlations may provide a misleading picture about possible dependencies between

assets. If, for example, two assets follow a nondegenerate joint normal distribution,

no matter how strong the correlation is, tail correlations approach zero the further

into the tails we go (see Rosenbaum, 1961),22 suggesting the absence of dependence.

Alternatively, a different data–cutting strategy coule be adopted. Rather than

computing correlations from joint tail observations, we could condition on only one

risk factor and compute

ρDCH
α = Corr(ri, rj | ri < −VaRα(ri)). (10)

With this, the two–dimensional return plane is not segmented into quadrants but

rather into half–planes. This ensures that we do not end up with an insufficient

number of tail observations, as the remaining sample size corresponds to the chosen

VaR–quantile. The use of (10) is particularly appropriate when the asset on which

22Note that the data–cutting approach is equivalent to the concept of “excess correlation” used

in Longin and Solnik (2001) who condition on percentage rather than quantile levels.
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we condition is regarded as the underlying risk driver.

Because of the small number of data points available to compute tail correlations—

even in the presence of large data sets—, QIS calibrations do not, or not exclusively

rely on the data–cutting method (9). They (also) seem to adopt what we, below,

refer to as VaR–implied correlations,23 which simply results from an inversion of the

Standard Formula.

For two risk components, the Standard Formula reduces to24

VaRα(ri + rj) =
√
VaRα(ri)2 +VaRα(rj)2 + 2ρVaRα(ri)VaRα(rj). (11)

CEIOPS (2010)25 suggests to use that value for ρ which minimizes the “aggregation

error”

∣∣VaRα(ri + rj)
2 − VaRα(ri)

2 − VaRα(rj)
2 − 2ρVaRα(ri)VaRα(rj)

∣∣ .

Having empirical VaR–estimates, denoted by V̂aRα(·), for assets i and j as well as

23Ultimately, it is not clear what particular method has been used for deriving the correlations

entering the Solvency II Standard Formula.
24Equation (11) assumes that both return series have mean zero. In practice, this assumption

is typically violated. Ignoring this fact, use of (11) will, generally, lead to biased VaR–implied

correlations. CEIOPS (2010) justifies the simplifying zero–mean assumption by arguing that their

“... calibration intends to quantify unexpected losses” (Footnote 113, p. 338). However, it is left

open where the expected means should come from.
25See § 3.1251 in CEIOPS (2010).
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for the sum of the two, the minimization amounts to

ρ̂V aR
α =





+1, if V̂aRα(ri+rj) > V̂aRα(ri)+V̂aRα(rj)

−1, if V̂aRα(ri+rj) <
∣∣∣V̂aRα(ri)−V̂aRα(rj)

∣∣∣
V̂aR

2

α(ri+rj)−V̂aR
2

α(ri)−V̂aR
2

α(rj)

2V̂aRα(ri)V̂aRα(rj)
, otherwise.

(12)

The first condition in (12) arises in the presence of superadditivity, i.e., when subad-

ditivity26 fails. The second condition could be referred to as “superdiversification,”

i.e., the seemingly unusual situation where the risks of two individual positions are

more than offset by the risk (or, better, “chance”) of the combined positions. Only if

neither of the two cases apply, will the VaR–implied–correlation estimate be strictly

between ±1. Although superadditivity and superdiversification may be rather unre-

alistic, the coarseness of extreme–quantile estimates may, in empirical analysis, lead

to such pathological situations.27

26See Artzner et al. (1999) on the VaR–measure’s lack of subadditivity.
27See Mittnik et al. (2011) on the potential of superadditivity in the context of aggregating

operational risk components.
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4.2 Annualization and Correlations

4.2.1 Correlations from Simulated Daily and Annualized Returns

In the following, we assess the consequences of rolling–window annualization on

correlation estimates. First, we compute the Pearson correlation for the two uncor-

related return series shown in Figure 3. We do this for both daily and annualized

return series using, analogous to the VaR calculations in Figure 4, 10–year rolling

windows to derive correlation estimates at each day in the 100–year period, starting

in year 11.

The results are shown in Figures 9. The Pearson–correlation estimates based on

daily data behave as expected. They hover tightly around zero, with a range of

±0.05. The correlation estimates derived from the one–year rolling–window returns

behave very differently. They vary considerably and assume values between –0.4 and

+0.5. Given that the two annualized return series are independent, the correlation

estimates are remarkably large.

Because Solvency II calibrations of equity–risk components are based on tail cor-

relations rather than just Pearson correlations, we also compute both data–cutting

and VaR–implied tail correlations, ρDCQ
α and ρV aR

α from the simulated returns. When

applying the data–cutting approach and adopting the 99.5% confidence level spec-

ified in Solvency II, we run into the problem that—for both daily and annualized

returns—there are practically no joint tail observations. In other words, ten years

or 2,590 observations are far from sufficient for the southwest quadrant, depicted in
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Figure 7, to contain any data, so that no tail correlations, can be computed.

If the data–cutting approach is to be adopted, one can no longer stick to the

99.5% confidence level, as demanded by the EU Directive (European Parliament,

2009). Therefore, in the simulations discussed below, we report results for lower

levels. The CEIOPS analysts also experimented with alternative confidence levels28

Analyzing the dependence between equity and fixed income, confidence levels from

99% down to 80% are considered. It turns out that the 99% confidence level ist still

too ambitious to obtain sufficient joint tail observations. Therefore, we compute

data–cutting tail correlations for the 95% and 80% confidence levels.29

The number of available joint tail observations (top) and the tail–correlation

estimates (bottom) for both daily and annualized returns and the 95%–level are

shown in Figure 10. For daily returns the number of joint tail observations lies

between 3 and 13—sample sizes much too low to obtain reliable estimates. As a

consequence, the tail correlation estimates (bottom of Figure 10) range from –1 to

+1. The picture looks even bleaker for annualized returns. Although the number

joint tail observations can move up to almost 60, it is zero for most of the available

89–year period. As a result, the tail–correlation plot (again, bottom of Figure 10)

has large gaps. In the few occasions where we can compute tail correlations, the

estimates also range from –1 to +1.

Given these findings, we cannot expect the data–cutting approach to produce

prudent correlation parameters that can be used for risk aggregation via the Stan-

dard Formula. Relying on annualized returns, the problem will not vanish even

when working with much longer than 10–year sample sizes. One option would be

to substantially lower the confidence level—although this contradicts the EU Direc-

tive, which explicitly prescribes the 99.5% level. But even for the 80%–level, the

number of observations can be insufficient to obtain reliable estimates. As Figure

11 indicates, though most of the time there is a reasonable number of joint tail

observations, there is no guarantee for this to hold throughout a sample.

More of a concern is the fact that the tail–correlation estimates jump erratically,

assuming values between –1 and +0.7. Clearly, with this performance, the DCQ–

28See Paragraphs 3.1376–3.1385 in CEIOPS (2010).
29The difficulty of deriving tail–correlation estimates using the data–cutting approach is ac-

knowledged in Paragraph 3.1384 in CEIOPS (2010) which states: “... the choice of percentile is

important in determining the correct correlation coefficient.” In an attempt to define the meaning

of “correct,” Paragraph 3.1385 continues:

It is key to strike a balance between being adequately in the tail, and having enough

data points for a reliable analysis. ... [T]he overall correlation matrix should produce

a level of stress equivalent to a 99.5% VaR event, so each individual pair can be

equivalent to significantly less than a 99.5th percentile stress, but still should be firmly

in the tail. The analysis must be subject to sensitivities for different percentiles, and

should be taken as providing an indication of the correct correlation.
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Figure 10: Available number of observations (top) and data–cutting tail–correlation

estimates, ρDCQ
95 , applied to daily and annualized returns; 95% confidence

level and 10–year estimation window
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Figure 11: Available number of observations (top) and data–cutting tail–correlation

estimates, ρDCQ
80 , applied to daily and annualized returns; 80% confidence

level and 10–year estimation window
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Figure 12: VaR–implied tail correlations for daily and annual returns

correlation approach does not qualify for regulatory purposes, unless much more

observations from the center of the distribution are included. Then, however, we

can no longer consider the estimates to be tail correlations.30

We also compute VaR99.5–implied tail correlations from the simulated data (Fig-

ure 12). For daily returns, the estimates lie steadily between –0.1 and +0.2. For

the annualized–returns, we obtain extremely erratic results. The tail–correlation

estimates cover values from about –0.75 to +0.85 and exhibit sudden jumps and

sign switches.

To summarize, the simulation results for data–cutting and VaR–implied correla-

tions strongly indicate that overlapping annual rolling–window returns will seriously

hamper any calibration effort towards designing prudent regulatory processes.

4.2.2 Bias and Efficiency

In empirical analysis it is commonly desired to employ unbiased and efficient estima-

tors. That is, the estimator should, on average, produce accurate point estimates;

and it should do so with little uncertainty, meaning that the interval estimates

should be small. In the following we examine how the use of overlapping rolling–

window returns affects the unbiasedness and efficiency of correlation estimates. We

conduct Monte Carlo analyses to investigate both bias and efficiency of correlation

30It should be noted that the problem of insufficient joint tail observations for computing data–

cutting correlations may be less dramatic when—as is usually the case—returns are heavy–tailed.

We will turn to this issue in Section 4.3 below.
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estimates as the window lengths increase, drawing the daily (continuous) returns

from a bivariate normal distribution, i.e.,

rt =

(
r1t
r2t

)
iid∼ N(µ,Σ), with µ =

(
0

0

)
and Σ =

(
1 ρ

ρ 1

)
. (13)

From (13) we generate 20,000 bivariate time series of length2 259×n, with n = 10, 40,

derive rolling–window returns with windows of lengths w ∈ {1, 5, 22, 65, 130, 259},
and compute three types of correlations between Rw

1t and Rw
2t: the standard Pearson

correlations based on all data, the half–plane data–cutting correlations, based on

the 0,5%–portion of the largest losses, and VaR–implied correlations at the 99.5%

level.

First, we generate independent series by setting, in (13), ρ = 0. Figure 13 plots

the bias for the three correlation estimators as the window length varies. The Pear-

son correlation is estimated from the whole sample; for the data–cutting correlation

and VaR–implied correlation we follow QIS5 specifications and obtain estimates for

the 0.5%–quantile (i.e., VaR99.5). Whereas the conventional Pearson and the data–

cutting correlations remain unbiased, the VaR–implied correlation estimate exhibits

a systematic upward bias as the window length increases. For annual aggregation

(w = 259) the bias reaches 0.09 for the 40–year sample. This means that even if

the returns of two assets are uncorrelated and independent, the VaR–implied corre-

lation estimates will on average produce a value of about 0.09, wrongly suggesting

a positive dependence.

Turning to the efficiency of the correlation estimators, Figure 14 reveals that the

confidence intervals around of the three estimators behave quite differently. The

conventional Pearson correlation has the tightest intervals, but they grow consider-

ably with the length of the aggregation window. Data–cutting correlations exhibit

already for small window length extremely large interval spreads, ranging from –0.9

to +0.9. The confidence intervals for the VaR–implied correlations are not much

better. They range from –0.5 to +1 for monthly aggregation, and cover the max-

imum possible range ±1 for annual aggregation. The extreme range could be due

to a couple of extreme outliers. But even the 90%–confidence interval ranges from

–0.5 to about +0.8, suggesting that, apart from being biased, VaR–implied correla-

tion estimates from rolling–window returns can be virtually all over the place and

provide no information about the underlying data–generating process.

The seriousness of the spurious–correlation problem is evident from the plots

in Figure 15. They show how the widths of the confidence intervals grows as the

window length increases. Debating whether or nor two particular asset classes have

a tail correlation of 0.3 or 0.8 is rather meaningless, given the blatant instability of

data– cutting and VaR–implied correlation estimators, when based on overlapping

rolling–window returns.

The histograms of the 20,000 VaR–implied correlation estimates are presented in

Figure 16. They, too, demonstrate the quick increase of the estimates’ dispersion as
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Figure 13: Bias in VaR–implied tail–correlation estimates due to rolling–window

aggregation, ρ = 0, 10–year (top) and 40–year (bottom) samples
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Figure 14: Confidence intervals of correlation estimates and rolling–window aggre-

gation, ρ = 0, 10–year (top) and 40–year (bottom) samples
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Figure 15: Length of confidence intervals of correlation estimates and rolling–

window aggregation, ρ = 0, 10–year (top) and 40–year (bottom) samples
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Figure 16: Histogram of VaR-implied tail correlations, ρ = 0 and 10–year samples

the aggregation level grows. The modes of the histograms remain more or less at

zero. However, as the aggregation length rises, so does the right–skewness, inducing

the upward bias in the tail–correlation estimates.

Next, we investigate the performance of the correlation estimators in the presence

of nonzero correlations between assets. We repeat the Monte Carlo experiment,

but now specify different levels of correlation for the daily returns, namely, ρ =

0.2, 0.4, 0.6, 0.8. Figure 17 shows the histograms of the VaR–implied correlations

obtained from 20,000 Monte Carlo replications for each of the four correlations

specified, assuming ten years of daily data. In each case, the VaR–implied correlation

estimates from annualized returns exhibit an upward biased. Even more of a concern

is the fact that there is a serious pile–up of estimates near or at +1 when daily

correlations reach ρ = 0.4. For ρ > 0.4, the mode of the distribution lies near +1, so

that, if daily correlations exceed 0.4, there seems to be an excessively high probability

that VaR–implied correlation estimates based on annualized returns assume values

that are near or exactly +1.

The median tail–correlation estimates for the cases ρ = 0.2, 0.4, 0.6, 0.8 are 0.2619,

0.4794, 0.6860, and 0.8751, respectively. Thus, if the true correlation is 0.4, we have

a 50% probability that the annualized data will produce an estimate above 0.48.

Table 2 summarizes selected probabilities for VaR–implied tail–correlation estimates

to exceed certain thresholds. For example, if the correlation of the underlying daily

data is 0.2, in Solvency II calibration produces with a probability of 25%, a tail–

correlation estimate above 0.56 and, with a probability of 10%, above 0.77. If

the underlying correlation is 0.6, there is a 50% probability that the estimate will
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Figure 17: Histogram of VaR-implied tail correlations from annualized returns for

differently correlated daily returns

exceed 0.67, and 25% probability it will lie above 0.87. Thus, there is a rather large

probability of ending up with grossly overstated tail–correlation estimates.

For ρ = 0.4, the simulated confidence intervals, shown in Figure 18, reveal that

the upper boundaries of the intervals for the VaR–implied correlation move ex-

tremely close to +1—even that of the 90% confidence level. Thus, it is very likely to

encounter tail–correlation estimates close to unity, even though the true correlation

is 0.4. For ρ > 0, the widths of the confidence bands of the VaR–impled estimates

become somewhat shorter relative to the uncorrelated case. This, again, is due to

the fact that correlation estimates have an upper bound of +1. However, for the

annual—and for Solvency II relevant—aggregation level, the range still covers the

maximum possible interval [–1, +1].

The simulation experiments reconfirm that, regardless of the level of the under-

lying correlation, VaR–implied tail–correlation estimates derived from overlapping

rolling–window returns behave extremely erratic.

4.3 Heavy Tails

To assess the consequences of moving from a normal distribution to a fat–tailed—

but still elliptical—bivariate t–distribution, we repeat the Monte Carlo experiment

and generate vectors rt = (r1t, r2t)
′ from a joint t–distribution with ν = 1, 2, 3, 4
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Table 2: Bias in VaR–implied correlation estimates due to rolling–window annual-

ization; sample size 10 years.

The entries represent exceedance probabilities. For example, the entry 0.63 in the last

row of Column 2 states that there is 10% probability that the estimated VaR99.5–implied

correlation is higher than 0.63, although the correlation of the underlying data is 0.0.

Daily ρ

Exceedance Probability 0.0 0.2 0.4 0.6 0.8

50% 0.09 0.26 0.48 0.67 0.88

25% 0.37 0.56 0.74 0.87 0.96

10% 0.63 0.77 0.89 0.96 0.99

degrees of freedom and correlation ρ = 0, i.e.,

rt =

(
r1t
r2t

)
iid∼ t(µ,Σ, ν), with µ = 0, ν = 1, 2, 3, 4 and Σ =

(
1 0

0 1

)
. (14)

Altogether, we performed 20,000 simulation runs, in each of which we generated 40

years of daily data and aggregate again over 5, 22, 65, 130, and 259 trading days.

Figure 19 illustrates that, for heavy–tailed, t–distributed data, the bias of the

VaR–implied correlation31 becomes more severe than in the normal case. The bias

in ρ̂V aR
99.5 increases as the degrees of freedom decrease, that is, as the heavy–tailedness

increases. In the case of a one–year rolling window and ρ = 0, temporal aggregation

with normally distributed daily returns produces a bias of +0.09 (see bottom right

plot in Figure 13). When daily returns come from a t–distribution with ν = 4

degrees of freedom, the bias in the VaR–implied correlation for annualized returns

rises to 0.12; it increases to 0.15 for ν = 3 and jumps to 0.26 for ν = 2.

Completely different from the above bias pattern is the case of ν = 1, with a bias

of –0.06. A t–distribution with ν = 1, which corresponds to a Cauchy distribution,

is extremely fat–tailed so that even the mean of the distribution is infinite.32 The

histograms of the VaR–implied correlation estimates for all four degrees–of–freedom

values (see Figure 20) show that the pile–up of the estimates at +1 starts with

ν = 3 and becomes serious for the infinite variance case of ν = 2. Note that the

pile–ups observed above for normally distributed returns occurred for correlations

exceeding 0.4. With t–distributed returns, the pile–up happens even for ρ = 0 when

the degree–of–freedom parameter gets sufficiently small. For ν = 1 extreme pile–ups

occur at both +1 and –1, with the remaining estimates being more or less evenly

distributed in–between.

31In view of the the dismal performance of the data–cutting correlation estimates in the normal

case, we focus only on VaR–implied correlations here.
32Due to the size of the draws from a bivariate t–distribution with ν = 1, we set both dispersion

parameters to 0.1 rather than 1, as was the case in all other simulations. In general, the scaling of

the variables should not affect the results. However, we did not investigate this issue.
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Figure 18: Confidence intervals and temporal aggregation, ρ = 0.4; sample size 10

years

The pile–up problem of the VaR–implied correlation estimates indicates that this

dependence measure is unsuitable for the situation at hand. The seriousness of the

problem for ν = 2 and ν = 1 could largely be due to the nonexistence of vari-

ances (for ν = 2) or the lack of finite means and variances (for ν = 1). However,

if that was the case, the VaR–implied correlation estimator should already break

down when applied to daily returns, not subjected to any temporal aggregation.

The histograms in Figure 21 illustrate the behavior of the estimates as the aggre-

gation window increases. For non–aggregated, daily data, the estimator produces a

somewhat dispersed but “reasonable” histogram without any pile–ups. The pile–up

problem arises already at weekly aggregation and worsens dramatically for higher

aggregation levels with pile–ups occurring at both –1 and +1.

The simulations demonstrate that the performance of the VaR–implied corre-

lation estimator applied to annualized returns becomes even worse when the un-

derlying returns are fat–tailed, but still, as is required for the estimator, elliptical,

distributed.

4.4 Tail Dependence

The nature of the comovements of risk factors is essential when assessing diversi-

fication benefits. If the focus is on extreme risks, we have to be interested in tail

dependence, which can be measured by the coefficient of tail dependence, denoted

here by λ. Let ri and rj be the returns of two risk components with marginal dis-
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Figure 19: Bias due to rolling–window aggregation for t–distributed daily returns

with different degrees of freedom and ρ = 0.0

tributions Fi and Fj , respectively. Then, the coefficient of lower tail dependence is

defined by33

λ = lim
q→0

P
(
ri ≤ F−1

i (q) | rj ≤ F−1
j (q)

)
∈ [0, 1]. (15)

If large losses in asset i tend to coincide with large losses in asset j, the coefficient of

(lower) tail dependence will be close to 1; if there is no such joint tendency, it will be

close to 0. Thus, the coefficient of tail dependence conveys important information

when, as in Solvency II calibrations, assessing the consequences of extreme losses.

To investigate the implications of rolling–window annualization of daily returns on

the joint tail behavior, we simulate 5,000 bivariate time series of lengths 40 and 4,000

years, respectively, with daily returns drawn from the bivariate t–distribution (14),

with ρ = 0.5 and ν = 4. The estimated coefficients of tail dependence for quantiles

1−α range from 0.001% to 2.5%. The results are shown in Figure 22. The horizontal

line in these plots indicates the theoretical value34 of the tail dependence coefficient

33In the case of asymmetric distributions, we distinguish between upper and lower tail depen-

dence. The coefficient of upper tail dependence is defined by simply reverting the inequalities in

(15). Below, we will only focus on lower tail dependence and use λ to denote the coefficient of

lower tail dependence.
34The analytic expression for the coefficient of tail dependence is given by

λ∗ = 2Ftν+1

(√
(ν + 1)(1− ρ)

1 + ρ

)
,

where Ftν+1(·) denotes the cumulative distribution function of the standard t–distribution with

ν + 1 degrees of freedom; see Embrechts et al. (2002).
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Figure 20: Histograms of VaR–implied tail–correlations estimates for t–distributed

daily returns with different degrees of freedom and ρ = 0.0

for the bivariate t–distribution with ν = 4 and ρ = 0.5, namely λ∗ = 0.2532; and

the dashed lines indicate the (bootstrapped) 95%–confidence bands.

The estimates from the daily data slightly overestimate the theoretical value of

λ∗, but they approach it very closely the further we move into the tail. The λ–

estimates from the annualized data behave very differently. Throughout the range,

they underestimate the theoretical value and approach zero the further we get into

the tails, suggesting absence of tail dependence. The confidence band for the 40–year

samples turns out to be extremely wide. Throughout the tail area considered, the

band includes zero, suggesting that the absence of tail dependence is not rejected.

The upper limit of the band hovers mostly around 0.6—except for the extreme tail

area, i.e., q ≤ 0.1%, when the upper limit of the confidence band quickly drops to

zero, implying the certain absence of tail dependence. The reason for both the point

estimates and the confidence intervals collapsing to zero is that rolling–window an-

nualization annualization not only scrambles linear dependence structures between

the assets, but also annihilates their joint tail behavior, so that there are virtually

no common tail observations left for a sample size of “only” 40 years.

The scatter plots for a typical realization of daily and annualized returns from

a 40–year sample in Figure 23 illustrate this phenomenon. For the simulated daily

returns (left graph) we observe, in accordance with the quantile considered, a fairly

large number of common tail observations and that there is ellipticity. For the annu-

alized data (right graph), although visual inspection suggest some form of negative

dependence, both the ellipticity and the common tail behavior disappear. For both
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Figure 21: Histograms of VaR–implied tail–correlation estimates with growing ag-

gregation windows, w, for t–distributed daily returns with ν = 1 degrees

of freedom and ρ = 0.0

risk factors, the annualized returns exhibit maximum losses to about –45%, however,

there are no observations in the joint tail region {R1, R2 : R1 ≤ −30%, R2 ≤ −30%}.
The bias for annualized returns remains even when having 4,000 years of data.

The λ–curve shift slightly upward, but stays well below the theoretical value of of

0.2532—especially, in the far–tail with an estimate under 0.05. The confidence band

narrows substantially and includes zero only in the far tail.

In view of the results of the simulation experiment. It is evident that the rolling–

window annualization more or less wipes out any tail dependence that is present in

the original data. Therefore, the hope to more adequately capture the dependence

between non–normally distributed asset classes by estimating tail–dependence co-

efficients, as expressed in Paragraphs 3.1255 and 3.1256 in CEIOPS (2010), will

not be fulfilled when the analysis is based on data that have been subjected to a

rolling–window annualization.

5 Conclusions

Given the significant role the insurance industry has in its own right as well as its

relevance for both the financial and the real sector of the economy, prudent risk–

assessment processes, ensuring insurers’ solvency, are of paramount importance. As

EIOPA (2011) (p. 5) states:
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Figure 22: Mean of estimated tail–dependence coefficients (solid curves) from

daily (left) and annualized (right) returns generated from bivariate t–

distribution (ρ = 0.5 and ν = 4) from a 40–year sample (top) and a

4,000–year sample (bottom) with 95% confidence bands (dashed)
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Figure 23: Scatter plots of daily (left) returns generated from bivariate t–

distribution (ρ = 0.5 and ν = 4) and annualized (right) returns from

a 40–year sample

QIS exercises are crucial to the development of EU regulation. ... [They]

are essential to strive to ensure that Solvency II is designed in the most

appropriate manner ...

CEIOPS has set up systematically structured procedures for measuring and ag-

gregating the risk components faced by insurance companies. Clearly, designing a

regulatory framework of this complexity is a lengthy, if not never–ending process,

and the implementation cannot wait until the “most appropriate” design has been

achieved. The question, however, is: Does the Solvency II framework, as currently

proposed, represent an overall improvement towards a prudential regulation of the

insurance industry? Or are there parts or modules whose implementation would be

premature?

Criticism against Solvency II calibrations has been raised before, arguing, for ex-

ample, that the Standard Formula is unstable with respect to distributional settings

(Pfeifer and Strassburger, 2006) or that indices chosen to represent particular equity

classes are inappropriate (Aria et al., 2010). The problems detailed here are, how-

ever, more fundamental. They strongly suggest that, by subjecting historical market

data to a particular annualization procedure prior to performing the calibration ex-

ercises, much of the QIS equity–risk calibrations may be rendered meaningless.

Specifically, an analysis of the consequences for assessing equity–risk (generally,

the most significant risk driver for insurers), when daily return data are annualized

via overlapping rolling–window annualization, shows that this transformation has a
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number of harmful implications. The main findings reported here can be summarized

as follows:

1. Rolling–window annualization leads to highly unreliable and erratic VaR and

correlation estimates. As these estimates are the sole input parameters of

the Standard Formula, both equity–specific and aggregate capital–requirement

estimates for equity risk, derived with the Standard Formula, will be mainly

a product of chance and not an indication of true risk exposures.

2. Specifically, the annualization causes strong temporal return and risk depen-

dencies in the data, as it induces near–unit–root characteristics, which are

responsible for SCR estimates being highly unstable over time and assuming

more or less arbitrary values.

3. The annualization also produces arbitrary contemporaneous dependence struc-

tures between asset classes. This affects the conventional Pearson correlation

and, more so, the data–cutting and VaR–implied tail–correlations favored in

the QIS5 calibrations.

4. A disturbing result is that, if the original data are weakly positively correlation,

tail–correlation estimates from annualized data are likely to be at or near

+1 and, thus, greatly exaggerate the presence of dependencies. This pile–up

problem may very well be the reason that QIS5 calibrations specify a perfect

positive correlation among “other equities.”

5. On the other hand, the annualization eliminates tail dependence that may be

present in the original data. This problem results from the fact that rolling–

window annualization destroys any (near-)ellipticity in the data, a property

that both the QIS5 tail–correlation concepts and the Standard Formula re-

quire.

The argument that tail correlation is a more appropriate dependence measure

than conventional Pearson correlation is appealing, given that asset returns often

exhibit asymmetries. The assumption of asymmetry contradicts, however, the use

of the Standard Formula, which is only valid for elliptical and, thus, symmetric

return distributions. If, on the other hand, we assume symmetry, there is no point

in using downside–risk and downside–dependence measures, such as VaR and lower–

tail correlation.

As they stand, QIS5 equity–risk calibrations fall far short of the goals EU leg-

islators strive for. Their application may do more harm than good. Setting, for

example, the correlations among all “other–equity” types—comprised of diverse as-

set classes, such as private equity, commodities, hedge fonds, and emerging–market

stocks—equal to +1 generates a serious disincentive to risk diversification. This

may severely affect investment activities that are essential for the development of

emerging and, in the case of private equity, developed economies.
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In view of these findings, the implementation of the Solvency II framework with

the currently proposed equity–risk calibrations seems far from prudent, if not irre-

sponsible.

Calibration results involving data subjected to rolling–window annualization need

to be reexamined using non–overlapping—weekly or daily—return data, as they pro-

duce more reliable parameter estimates. To derive annualized SCRs, the calibration

needs to capture temporal dependence structures as well, so that risk can be aggre-

gated over time. Clearly, the latter will be an additional, nontrivial task requiring

serious efforts. But given the stakes involved, the necessary resources appear negli-

gible in comparison.
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6 Appendices

Appendix A: Continuous versus Discrete Returns

There are two approaches to calculating returns on financial assets. Practitioners

commonly use discrete returns, whereas empirical analysts and researchers typically

resort to continuous returns. The former reflect the true, relative price change, and is

used when calculating the return on an investment or measuring the performance of

an asset. The latter represent an approximation, which is convenient for empirical

or analytical investigations as they can be additively rather than mutiplicatively

aggregated over time.
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Let Pt and Pt−1 denote the price of an asset at the end of period t and t − 1,

respectively. Then, the discrete return over the period (t − 1, t], denoted by Rt is

given by35

Rt =
Pt − Pt−1

Pt−1

=
Pt

Pt−1

− 1; (16)

and the continuous return, denoted by rt, by

rt = logPt − logPt−1 = log

(
Pt

Pt−1

)
. (17)

If price changes, Pt−Pt−1, are small, then, discrete returns can be approximated by

their continuous counterpart, i.e.,

rt = log(1 +Rt) ≈ Rt, (18)

with the approximation following from the fact that, for small x, log(1 + x) ≈ x.

Note that, if continuous returns are normally distributed, gross discrete returns, i.e.,

1 +Rt, are lognormally distributed.

The assumption of small price changes is not unreasonable, when dealing with

returns over short holding periods, such as a day or a week. For longer horizons, such

as the one–year holding period assumed for Solvency II regulation, approximation

(18) can be poor, so that discrete returns should be used for empirical analysis.

All simulation results reported here are based on discrete returns. However, due

to better tractability, analytical results, involving daily return, rely on continuous

returns. The proximity of simulated and analytically derived results, when available,

indicates the appropriateness of the approximation.

Continuous and discrete multi–period returns over, say, w > 0 periods, given by

rwt =
∑w−1

i=0 rt−i and Rw
t =

∏w−1
i=0 (1 +Rt−i)− 1, respectively, are related via

Pt

Pt−w
= 1+Rw

t =

w−1∏

i=0

(1+Rt−i) =

w−1∏

i=0

exp{rt−i} = exp

{
w−1∑

i=0

rt−i

}
= exp{rwt }. (19)

All Monte Carlo simulations reported here are based on discrete returns, which

we obtain by drawing continuous daily returns, rt, from a normal or Student–t

distribution (at one occasion “enriched” with GARCH dynamics) and computing

multi–period, rolling–wind returns via (19).

Appendix B: Multi–period Rolling–window Returns and Near–

unit Roots

Continuous rolling–window returns over horizon w are given by

rwt =

w−1∑

i=0

rt−i, w ≥ 1, t = 1, 2, . . . . (20)

35We abstract here from possible adjustments that arise from dividend payments, splits or other

measures.

41



If daily returns, rt, are white noise, i.e., rt
iid∼ (0, σ2), (20) corresponds to a moving–

average process of order w−1. This process is, in fact, a stationary process36 and not

a nonstationary unit–root process. However, as w increases, the process approaches

a nonstationary unit–root process. Process (20) can also be rewritten as

rwt = rwt−1 + rt − rt−w. (21)

This amounts to a special autoregressive moving–average process with orders 1 and

w, but it is only the term rt−w on the right–hand side that distinguishes it from a

random walk. As w increases, the influence of rt−w on the variation of rwt diminishes,

because
Cov(rwt , rt−w)

Var(rwt )
=

1

w
. (22)

To demonstrate, as stated in (6), that the ordinary least–squares (OLS) estimator,

âT , for a in autoregression rwt = arwt−1 + vt, given by

âT =

∑T
t=1 r

w
t r

w
t−1∑T

t=1

(
rwt−1

)2 ,

approaches (w − 1)/w as the sample size, T , grows, we show that plimT→∞ âT =

(w− 1)/w. Assuming that the one–period returns are white noise, i.e., rt
iid∼ (0, σ2),

we obtain for the numerator and denominator

plimT→∞
1

T

T∑

t=1

rwt r
w
t−1 = plimT→∞

1

T

T∑

t=1

[(
w−1∑

i=0

rt−i

)(
w−1∑

i=0

rt−1−i

)]

= (w − 1)σ2

and

plimT→∞
1

T

T∑

t=1

(
rwt−1

)2
= plimT→∞

1

T

T∑

t=1

(
w−1∑

i=0

rt−1−i

)2

= wσ2,

respectively, so that (6) follows.

Given that the root of a first–order autoregressive process is the reciprocal value

of the autoregressive coefficient, i.e., w/(w − 1), a rolling–window return series ap-

proaches a unit–root process as the window length increases.

36We have E(rwt ) = 0 and Cov(rwt , r
w
t−k) = (w−k)σ2, for k = 0, 1, . . . , w−1, and Cov(rwt , r

w
t−k) =

0, for k ≥ w.
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