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1 Introduction

A standard quanto option is a foreign–currency European option, whose pay-

off at maturity is converted to another (typically domestic) currency at a fixed

exchange rate. The main purpose of using quantos is to provide foreign–

asset exposure without taking the corresponding exchange rate risk. As a

consequence, the dependence structure between the asset and the exchange

rate is instrumental in the valuation of quantos. Quanto pricing based on

the Black–Scholes model (Black and Scholes, 1973), assuming a multivariate

Brownian motion as data–generating process, has been studied, among oth-

ers, by Baxter and Rennie (1996) and Dimitroff et al. (2009). Recently, Park

et al. (2013) proposed a method for pricing quanto options in the stochastic

volatility setting considered in Hull and White (1987), using the series ex-

pansion approach introduced in Antonelli et al. (2010). Apart from allowing

for stochastic volatility, their setup remains in the classical Black–Scholes

setting. The Black–Scholes assumptions have, however, been soundly re-

jected on empirical grounds due to the fat–tailedness and the asymmetry

commonly observed in returns on financial assets (cf. Rachev and Mittnik

(2000), Morales (2007) and Harmantzis and Miao (2009)).

In this paper, we present an approach to pricing quanto options under the

assumptions that the financial instruments involved are governed by a multi-

variate normal tempered stable (NTS) process. NTS distributions and pro-

cesses have been introduced by Barndorff-Nielsen and Levendorskii (2001),

using a time–changed Brownian motion with a tempered stable subordina-

tor, and applied in Barndorff-Nielsen and Shephard (2001). The multivariate

NTS distribution has been studied empirically and applied to portfolio analy-

sis in Kim et al. (2012). The asymmetric dependence of the NTS distribution
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is discussed in Kim and Volkmann (2013).

Given that the NTS model is expected to provide a better description of

the empirically observed return processes by permitting fat–tailedness and

asymmetric dependence, it is also expected to give rise to more realistic op-

tion valuation. Pricing European and American call and put options for Lévy

processes, a general class containing the NTS process, has been extensively

discussed in the literatures, including Carr and Madan (1999), Lewis (2001)

Barndorff-Nielsen and Levendorskii (2001), and Kim et al. (2008). Studies

on quanto options seem to be lacking, however. In order to conduct quanto

option pricing, two–dimensional processes need to be considered. Given their

stronger empirical footing, multivariate NTS processes appear to provide a

suitable framework for quanto option valuation.

In the following, we present a closed–form solution for quanto option

pricing under the NTS model. An empirical application, involving the Nikkei

225 index and the exchange rate between the U.S. dollar and the Japanese

yen, illustrates that the NTS model clearly dominates the Black–Scholes

model, which, in contrast to the NTS model, is soundly rejected by the data.

We find that the quanto call and put prices derived under NTS assumptions

can substantially differ from those derived in a Black–Scholes setting. The

latter tends to underestimate the underlying risk and, thus, leads to lower

quanto prices.

The remainder of this paper is organized as follows. In Section 2, we

discuss the multivariate NTS distribution and the change of measures for

the NTS process. Section 3 reviews quanto option pricing in the Black–

Scholes framework, before presenting the solution for the NTS model. An

illustrative empirical application is given in Section 4. We summarize our
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main findings in Section 5.

2 Multivariate NTS Processes

We consider an N–dimensional process and define α ∈ (0, 2), θ > 0, γ =

(γ1, γ2, ..., γN)ᵀ ∈ RN , β = (β1, β2, ..., βN)ᵀ ∈ RN , and σ = (σ1, σ2, ..., σN)ᵀ,

with σn > 0, for all n ∈ {1, 2, ..., N}. Let R = [ρm,n]m,n∈{1,2,...,N} be a

dispersion matrix and R1/2 given by factorization R = R1/2(R1/2)ᵀ, such as a

Cholesky factorization, and T = (T (t))t≥0 be a tempered stable subordinator

with characteristic function

φT (t)(u) = exp

(
−2tθ1−α

2

α

(
(θ − iu)

α
2 − θ α2

))
; (1)

and let B = (B(t))t≥0 be an independent N -dimensional Brownian motion,

i.e., B(t) = (B1(t), B2(t), ..., BN(t))ᵀ, which is assumed to be independent of

T .

TheN -dimensional processX = (X(t))t≥0, X(t) = (X1(t), X2(t), ..., XN(t))ᵀ,

defined by

X(t) = γt+ β(T (t)− t) + diag(σ)R1/2B(T (t))

is called an N -dimensional NTS process and denoted by

X ∼ NTSN (α, θ, γ, β, σ, R) .

The characteristic function of Xn is

φXn(t)(u) = exp

(
(γn − βn)iut− 2tθ1−α

2

α

((
θ − βniu+

σ2
nu

2

2

)α
2

− θ α2
))

;

and expectation and covariance are given by

E[Xn(t)] = γnt,
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and

cov(Xm(t), Xn(t)) = σmσnρm,nt+ βmβnt

(
2− α

2θ

)
, (2)

respectively. The characteristic function is analytically extended in a subset

of the complex field

In =

{
z ∈ C : − 1

σ2
n

(
βn +

√
β2
n + 2σ2

nθ
)
≤ Im(z) ≤ 1

σ2
n

(√
β2
n + 2σ2

nθ − βn
)}

,

that is, φXn(t)(ξ) is well defined, if ξ ∈ In.

As the following proposition states,1 weighted sums of the NTS random

variables are again NTS distributed.

Proposition 2.1. Let w = (w1, w2, ..., wN)ᵀ ∈ RN and X ∼ NTSN(α, θ, γ, β,

σ,R). Then, wᵀX ∼ NTS1(α, θ, γ̄, β̄, σ̄, 1) with

γ̄ =
N∑

n=1

wnγn, β̄ =
N∑

n=1

wnβn, and σ̄ =

√√√√
N∑

m=1

N∑

n=1

wmwnσmσnρm,n.

To discuss the change of measure for the NTS process, we recall Girsanov’s

theorem.

Theorem 2.1 (Girsanov, cf. Klebaner (2005)). Suppose (B(t))t≥0, B(t) =

(B1(t), B2(t), · · · , BN(t))ᵀ, is an N-dimensional Brownian motion under mea-

sure P. Let (W (t))t≥0, W (t) = (W1(t),W2(t), · · · ,WN(t))ᵀ, be an N-dimen-

sional process, such that

Wn(t) = Bn(t) +

∫ t

0

Hn(s)ds,

with (H(t))t≥0, H(t) = (H1(t), H2(t), · · · , HN(t))T, being an adapted process

satisfying
∫ t

0
||H(s)||2ds <∞. Moreover, let

Ξ(t) = −
N∑

n=1

∫ t

0

Hn(s)dBn(s),

1See Kim et al. (2012) for the proof.
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and assume that (eΞ(t)− 1
2

[Ξ,Ξ](t))t∈[0,T ] is a martingale. Then, there is an equiv-

alent probability measure Q, such that (W (t))t≥0 is a Q-Brownian motion.

Q is determined by

dQ
dP

= eΞ(T )− 1
2

[Ξ,Ξ](T ),

where [Ξ,Ξ](t) =
∑N

n=1

∫ t
0
(Hn(s))2ds, t ∈ [0, T ].

Let (τ(t))t≥0 be the process satisfying T (t) =
∫ t

0
τ(u)du, for all t ≥ 0.

Then,

X(t) = γt+ β

∫ t

0

(τ(u)− 1)du+ diag(γ)R1/2

∫ t

0

√
τ(u)dB(u).

Moreover, let λ = (λ1, λ2, · · · , λN)T and β̂ = (β̂1, β̂2, · · · , β̂N)ᵀ be vectors

satisfying

γ − β = λ− β̂,

and let H(t) = (H1(t), H2(t), ..., HN(t))ᵀ be an N -dimensional process, such

that

diag(γ)R1/2H(t) = (β − β̂)
√
τ(t).

Then,

X(t) = λt+ β̂

∫ t

0

(τ(u)− 1)du

+ diag(γ)R1/2

(∫ t

0

√
τ(u)H(u)du+

∫ t

0

√
τ(u)dB(u)

)
.

By Theorem 2.1, with

dQ
dP

= eΞ(T )− 1
2

[Ξ,Ξ](T ), for Ξ(t) = −
N∑

n=1

∫ t

0

Hn(s)dBn(s), (3)

process

W (t) = B(t) +

∫ t

0

H(u)du,
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is a Q-Brownian motion; and we have

X(t) = λt+ β̂

∫ t

0

(τ(u)− 1)du+ diag(γ)R1/2

∫ t

0

√
τ(u)dW (u)

= λt+ β̂(T (t)− t) + diag(γ)R1/2W (T (t)).

Therefore, as the following proposition states, X ∼ NTSN(α, θ, λ, β̂, σ, R) is

an NTS–process under measure Q.

Proposition 2.2. Suppose X ∼ NTSN (α, θ, γ, β, σ, R) under measure P.

Let λ = (λ1, λ2, · · · , λN)ᵀ and β̂ = (β̂1, β̂2, · · · , β̂N)ᵀ be vectors satisfying

γ − β = λ− β̂.

Then, there is an equivalent measure Q, such that

X ∼ NTSN

(
α, θ, λ, β̂, σ, R

)
.

In this case, the Radon–Nikodym derivative is given by (3).

Below, we will derive the quanto option price assuming that the asset and

the exchange rate follow a two–dimensional NTS process.

3 Quanto Option Pricing

We denote the domestic and the foreign risk–free interest rates by rd and rf ,

respectively. Then, let (S(t))t≥0 be the price process for the asset in foreign

currency, (V (t))t≥0 the price process of the asset in domestic currency, and

(F (t))t≥0 the exchange rate process of the foreign currency relative to the

domestic currency.

Before presenting the solution for quanto option pricing in the NTS frame-

work, we summarize the results under Black–Scholes assumptions (cf. Section

4.5 in Baxter and Rennie, 1996).
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3.1 Black–Scholes Quanto Option Pricing

Suppose that the processes V (t) and F (t) are such that

V (t) = V (0) exp (µXt+ σXWX(t))

and

F (t) = F (0) exp(µY t+ σYWY (t)),

where (WX(t))t≥0 and (WY (t))t≥0 are Brownian motions with correlation ρ.

To simplify the model, we assume that WY (t) = ρWX(t) + ρ̄W̄Y (t), ρ̄ =
√

1− ρ2 and that WX(t) and W̄Y (t) are independent.

To derive a risk–neutral measure, Q, which makes exp(−rdt)V (t) and

exp(−(rd − rf )t)F (t) martingales, we apply Girsanov’s theorem and specify

the market prices of risk as

λ1 =
1

σX

(
µX +

1

2
σ2
X − rd

)

and

λ2 =
ρ

σX ρ̄

(
−µX −

1

2
σ2
X + rd

)
+

1

σY ρ̄

(
µY +

1

2
σ2
Y − rd + rf

)
,

and set W̃X(t) and ˜̄WY (t) to

W̃X(t) = λ1t+WX(t

and

˜̄WY (t) = λ2t+ W̄Y (t),

respectively. Then, there is an equivalent measure Q, such that (W̃X(t))t≥0

and ( ˜̄WY (t))t≥0 are independent Brownian motions under Q. Hence, under

measure Q, we have

V (t) = V (0) exp

(
rdt−

σ2
X

2
t+ σXW̃X(t)

)
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and

F (t) = F (0) exp

(
(rd − rf )t−

1

2
σ2
Y t+ σY ρW̃X(t) + σY ρ̄

˜̄WY (t)

)
.

Moreover, since S(t) = V (t)/F (t), we have

S(t) = S(0) exp

(
rf t−

1

2
(σ2

X − σ2
Y )t+ (σX − σY ρ)W̃X(t)− σY ρ̄ ˜̄WY (t)

)
.

Let σ2 = σ2
X − 2σXσY ρ+ σ2

Y , and let (W (t))t≥0 be a Brownian motion inde-

pendent to (W̃X(t))t≥0 and ( ˜̄WY (t))t≥0 under measure Q. Then, the process

((σX − σY ρ)W̃X(t) − σY ρ̄ ˜̄WY (t))t≥0 is equivalent to the process (σW (t))t≥0

in L2, so that

S(t) = S(0) exp

(
rf t−

1

2
(σ2

X − σ2
Y )t+ σW (t)

)

= S(0) exp

(
rf t+ (σ2

Y − σXσY ρ)t− σ2

2
t+ σW (t)

)
.

The payoff function of a quanto call option is given by Ffix(S(T )−K)+,

where Ffix is the pre-determined exchange rate. Applying the Black–Scholes

option pricing formula, we can compute the price of a quanto call option, c0,

at time t = 0, via

c0 = e−rdTEQ[Ffix(S(T )−K)+]

= Ffix

(
e(rf−rd+σ2

Y −ρσXσY )TS(0)N(d1)− e−rdTKN(d2)
)
, (4)

with

d1 =
(rf + σ2

Y − ρσXσY + 1
2
σ2)T + log(S(0)/K)

σ
√
T

,

d2 = d1 − σ
√
T ,

and N(·) representing the cumulative standard normal distribution function.
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3.2 NTS Quanto Option Pricing

To obtain the NTS–based quanto option value, we assume that processes

(V (t))t≥0 and (F (t))t≥0 are given by

V (t) = V (0) exp (µXt+X(t)) and F (t) = F (0) exp (µY t+ Y (t)) , (5)

where µX , µY ∈ R and

(X, Y ) ∼ NTS2

(
α, θ,

[
0
0

]
,

[
βX
βY

]
,

[
σX
σY

]
,

[
1 ρ
ρ 1

])

under the physical (or market) measure P. Using Proposition 2.2, we can

find equivalent measure Qλ, under which

(X, Y ) ∼ NTS2

(
α, θ,

[
λX
λY

]
,

[
βX + λX
βY + λY

]
,

[
σX
σY

]
,

[
1 ρ
ρ 1

])
.

To derive the risk–neutral measure, we have to find an equivalent mea-

sure, Qλ∗ , with λ∗ = (λ∗X , λ
∗
Y )ᵀ, under which the discounted price processes

(Ṽ (t))t≥0 and (F̃ (t))t≥0, with Ṽ (t) = e−rdtV (t) and F̃ (t) = e(−rd+rf )tF (t),

are martingales. The martingale property is satisfied, if EQλ∗

[
Ṽ (t)

]
= V (0)

and EQλ∗

[
F̃ (t)

]
= F (0), which is equivalent to

e(µX−rd)tEQλ∗
[
eX(t)

]
= 1, and e(µY −rd+rf )tEQλ∗

[
eY (t)

]
= 1.

Hence, λ∗ has to satisfy:

RN.1: λ∗X < θ − βX − σ2
X

2
and λ∗Y < θ − βY − σ2

Y

2
for EQλ∗

[
eX(t)

]
and

EQλ∗
[
eY (t)

]
to exist.

RN.2: µX − rd + w(λ∗X) = 0 and µY − rd + rf + w(λ∗Y ) = 0, where

w(λ∗X) = logEQλ∗
[
eX(1)

]

= −βX −
2θ1−α

2

α

((
θ − βX − λ∗X −

σ2
X

2

)α
2

− θ α2
)

9



and

w(λ∗Y ) = logEQλ∗
[
eY (1)

]

= −βY −
2θ1−α

2

α

((
θ − βY − λ∗Y −

σ2
Y

2

)α
2

− θ α2
)
.

Moreover, we have µX = rd − w(λ∗X) and µY = rd − rf − w(λ∗Y ), so that

V (t) = V (0) exp ((rd − w(λ∗X))t+X(t))

and

F (t) = F (0) exp ((rd − rf − w(λ∗Y ))t+ Y (t)) .

Since the asset price in foreign currency, S(t), is obtained by S(t) = V (t)/F (t),

we have

S(t) = S(0) exp ((rf − w(λ∗X) + w(λ∗Y )) t+ Z(t)) , (6)

with Z(t) = X(t)−Y (t), under the risk–neutral measure Qλ∗ . By Proposition

2.1, process Z = (Z(t))t≥0 follows Z ∼ NTS1 (α, θ, γZ , βZ , σZ , 0) under the

measure Qλ∗ , where γZ = λ∗X − λ∗Y , βZ = βX + λ∗X − βY − λ∗Y and σZ =
√
σ2
X + σ2

Y − 2σXσY ρ. Hence, the characteristic function of Z(t) is given by

φZ(t)(u) = exp

(
− (βX − βY )iut− 2tθ1−α

2

α
×

((
θ−i (βX+λ∗X−βY − λ∗Y )u+

u2

2

(
σ2
X+σ2

Y −2σXσY ρ
))α

2

− θ α2
))

.

(7)

We can now find the quanto option pricing formula using the general

European option pricing formula given in Lewis (2001), giving rise to the

following theorem.

Theorem 3.1. Let h(x) be a payoff function of a European option with

x = logS(T ) and ĥ(ξ) =
∫∞
−∞ e

−iξxh(x)dx. Suppose ĥ(ξ) is defined for all ξ ∈

10



Rh = {z ∈ C : Im(z) ∈ Ih}, for some open interval Ih. The driving process

(U(T ))t≥0, with U(t) = lnS(t), is a Lévy process, such that a characteristic

function φU(T−t)(u) of U(T − t) is defined for all ξ ∈ Rφ = {z ∈ C : Im(z) ∈

Iφ}, for some open interval Iφ. Then, the European option price C(t) is

determined by

C(t) =
e−rd(T−t)

2π

∫ ∞

−∞
(S(t))i(u+iζ)φU(T−t)(u+ iζ)ĥ(u+ iζ)du, (8)

where ζ ∈ Ih ∩ Iφ.

Since the payoff function of the quanto option is given by Ffix(S(T )−K)+,

we have

h(x) = Ffix(e
x −K)+

and

ĥ(ξ) = −FfixK
1−iξ

ξ(ξ + i)
.

Moreover, ĥ(ξ) is well defined for ξ ∈ {z ∈ C : Im(z) ∈ Ih = (−∞,−1)}. By

(6) and (7), we have

U(T − t) = (rf − w(λ∗X) + w(λ∗Y )) (T − t) + Z(T − t),

and, hence,

φU(T−t)(ξ) = eiξ(rf−w(λ∗X)+w(λ∗Y ))(T−t)φZ(T−t)(ξ).

Functions φU(T−t)(ξ) and φZ(T−t)(ξ) are both well defined for ξ ∈ {z ∈ C:

Im(z) ∈ IφZ}, with

IφZ =

[
− 1

σ2
Z

(
βZ +

√
β2
Z + 2σ2

Zθ

)
,

1

σ2
Z

(√
β2
Z + 2σ2

Zθ − βZ
)]

.
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Therefore, using Theorem 3.1, the European call price is determined by

C(t) =
e−rd(T−t)

2π

∫ ∞

−∞
(S(t))i(u+iζ) eiξ(rf−w(λ∗X)+w(λ∗Y ))(T−t)

× φZ(T−t)(ξ)
FfixK

1−i(u+iζ)

(−1)(u+ iζ)(u+ i(ζ + 1))
du

=
e−rd(T−t)FfixK1+ζ

2πS(t)ζeζ(rf−w(λ∗X)+w(λ∗Y ))(T−t)

×
∫ ∞

−∞

S(t)iueiu(rf−w(λ∗X)+w(λ∗Y ))(T−t)φZ(T−t)(u)

Kiu(iu− ζ − 1)(iu− ζ)
du, (9)

with ζ ∈
[
− 1
σ2
Z

(
βZ +

√
β2
Z + 2σ2

Zθ
)
,−1

]
, under the condition that

1

σ2
Z

(
βZ +

√
β2
Z + 2σ2

Zθ

)
> 1.

Using the same arguments, we can, analogous to (9), derive the European

put option pricing formula for ζ ∈
[
0, 1

σ2
Z

(√
β2
Z + 2σ2

Zθ − βZ
)]

.

4 Empirical Application

For an empirical illustration, we consider a contract on the Nikkei 225 stock

index quoted in U.S. dollars (USD) with the payoff settled in Japanese yen

(JPY).2 Suppose V (t) is the dollar–valued price process of the Nikkei 225

index and F (t) the process of the JPY–USD exchange rate, where one JPY

amounts to F (t) dollar. We estimate market parameters using daily log–

returns on the USD–valued Nikkei 225 index and the JPY–USD exchange

rate from January 4, 2000 to June 21, 2013. USD–valued Nikkei 225 index

prices are obtained by converting the original JPY–valued Nikkei 225 index

levels into U.S. dollars using the JPN–USD exchange rate. The (scaled) price

series are shown in Figure 1 and summary statistics of the daily log–returns

are given in Table 1

2The options on the Nikkei 225 dollar futures traded on the Chicago Mercantile Ex-
change are an example of such a quanto product.
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Figure 1: Price series (scaled) of the Nikkei 225 index and the JPY–USD
exchange rate.

For the Black–Scholes model, we estimate µX , µY , σX , σY , and ρ by the

sample means, the sample standard deviations and the sample correlation.

For the NTS model, the parameters µX , µY , α, θ, βX , βY , σX , and σY are

estimated using maximum likelihood; and ρ is calculated via Equation (2).

The estimated Black–Scholes and NTS market parameters and their 95%–

confidence intervals are reported in Table 2.3

3Note that all estimates are expressed in annualized form. To obtain the 95% confidence
intervals, we simulate 1,000 random, bivariate NTS vectors from the estimated NTS model
via

[
X(∆t)
Y (∆t)

]
=

[
µX

µY

]
∆t+

[
βX
βY

]
(T (∆t)−∆t) +

[
σX 0
0 σY

] [
1 0

ρ
√

1− ρ2
] [
εX
εY

]
T (∆t),

where the subordinator T (∆t) is set to ∆t = 1/250 (i.e., the reciprocal of the number
of trading days per annum), and εX and εY are independent standard normal random
variables. We repeat the simulation and the parameter estimation 1,000 times and obtain

13



Table 1: Summary statistics for the daily log-returns on the Nikkei 225 index
and the Japanese yen and U.S. dollar exchange rate over the period January
5, 2000 and June 21, 2013.

Nikkei 225 JPY–USD
Mean −9.6686 · 10−5 1.6645 · 10−5

Std. deviation 0.0166 0.0068
Skewness −0.3912 −0.0610
Kurtosis 7.9913 6.7307
Minimum −0.1371 −0.0547
Q.01 −0.0461 −0.0185
Q.05 −0.0263 −0.0103
Q.1 −0.0191 −0.0078
Q.5 3.2992 · 10−4 9.0306 · 10−5

Q.9 0.0192 0.0078
Q.95 0.0244 0.0105
Q.99 0.0395 0.0184
Maximum 0.1186 0.0360
Correlation 0.2851

The α–estimate of 1.4953 is well below 2 (the Gaussian case), indicating

substantial fat–tailedness for the returns on the dollar–valued Nikkei index

and the yen–dollar exchange rate. The negative βNi–estimate of -0.3882,

with the 95%–confidence interval excluding 0, reflects the negative skewness

of the Nikkei index returns, whereas the marginal JPN–USD distribution is

practically symmetric. Hence, the dependence between the returns on the

Nikkei and yen is not a simple linear one that can be fully described in terms

of a correlation measure.

Graphs of the empirical bivariate density obtained via kernel–density es-

timation as well as the fitted Gaussian and NTS models are shown in Figure

2. It is evident that the Gaussian model cannot capture the pronounced

peakedness of the empirical distribution. Having a fixed shape parameter,

1,000 sets of parameters. The 95%–confidence intervals are, then, defined by the empirical
2.5% and 97.5% quantiles. The confidence intervals for the Gaussian estimates are obtained
in an analogous manner.
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Table 2: Estimated market parameters and 95% confidence intervals (in
parentheses) for the Gaussian model and the normal tempered stable (NTS)
models fitted to the Nikkei 225 index (subscript Ni) and the JPY–USD
exchange rate (subscript FX).

Gaussian NTS
µNi −0.0242 −0.0231

(−0.0290,−0.0190) (−0.1619, 0.1194)
σNi 0.2630 0.2586

(0.2594, 0.2668) (0.2478, 0.2673)
βNi 0 −0.3822

— (−0.7787,−0.0806)
µFX 0.0042 0.0035

(0.0022, 0.0063) (−0.0570, 0.0648)
σFX 0.1079 0.1065

(0.1064, 0.1095) (0.1018, 0.1105)
βFX 0 0.0494

— (−0.0911, 0.2102)
ρ 0.2851 0.2971

(0.2671, 0.3031) (0.1748, 0.3565)
α 2 1.4953

— (1.0973, 1.6517)
θ — 53.094

— (28.204, 189.599)

the Gaussian model lacks flexibility and has to settle for a compromise when

trying to fit the center and the tails of the distribution.

This is reflected in the goodness-of-fit properties of the fitted marginal dis-

tributions. We compute the Kolmogorov–Smirnov (KS) and the Anderson–

Darling (AD2) test statistics, given by

KS =
∑

x

|F̂ (x)− F (x)|

and

AD2 = s

∫ ∞

−∞

(F̂ (x)− F (x))2

F (x)(1− F (x))
dF (x),

respectively, where F̂ (x) is the empirical sample distribution, F (x) the es-
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Figure 2: Fitted bivariate density function: (a) kernel density estimate, (b)
Gaussian fit, and (c) NTS fit.
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Table 3: Goodness of fit measured by the Kolmogorov–Smirnov (KS) and
Anderson-Darling (AD2) statistics and their p–values (in parentheses) for the
Gaussian model and the normal tempered stable (NTS) model fitted to the
Nikkei 225 index and the JPY–USD exchange rate.

Gaussian NTS
Nikkei KS 0.0494 0.0118

(0.0000) (0.7638)
AD2 16.37 0.3102

(0.0000) (0.9303)

JPY–USD KS 0.0499 0.0140
(0.0000) (0.5547)

AD2 16.429 0.4410
(0.0000) (0.8073)

timated theoretical distribution, and s the number of observations.4 The

goodness-of-fit statistics for both models, together with their p–values, are

also reported in Table 3. The p–values strongly indicate that the Black–

Scholes model is rejected by the data, whereas the NTS model is rather

compatible with the data.

To derive risk–neutral parameters, we set the domestic (i.e., U.S.) risk–

free rate to rd = 0.25% and the foreign rate to rf = 0.1%. These were the

respective central bank rates for the U.S. and Japan in June 2013. For the

NTS model, we obtain λ∗X = −8.1181 · 103 and λ∗Y = −8.2020 · 103. These

values satisfy Conditions RN.1 and RN.2. Setting Ffix = 0.010214, time–to–

maturity to three months (i.e., T − t = 0.25), the current underlying index

price to S(t) = 13, 230 JPY, and considering a range of in– and out–of–the–

money strike prices, we derive European quanto call (and put) option prices

for the Black–Scholes and the NTS model using (4) and (9).

The option prices implied by the two models are plotted in Figure 3;

4The calculation of the p-values for the KS and AD2 statistics is detailed in Marsaglia
et al. (2003) and Marsaglia and Marsaglia (2004).
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Figure 3: European quanto call prices (left) and European quanto put prices
(right) implied by the Black–Scholes (B-S) model and the normal tempered
stable (NTS) model as a function of moneyness, K/S(0), where K denotes
the strike price and S(0) the current underlying index level.

and differences (in percent) of the NTS prices relative to those from the

Black–Scholse model are graphed in Figure 4. Both call and prices derived

from the NTS model are higher than those of the Black–Scholes model. The

differences increase the further we move out of money. This is due to the fact

that the NTS model assigns higher probabilities to tail events. Figure 4 also

demonstrates that the presence of asymmetries affects NTS option pricing.

Relative to the BS–impled prices, out–of–the–money put options are valued

higher than the corresponding out–of–the–money call options, which is a

consequence of the Nikkei returns being negatively skewed.
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Figure 4: Relative deviations of European quanto call prices (solid line) and
European quanto put prices (dash–dot) of the normal tempered stable model
from the Black–Scholes prices as a function of moneyness.

Given the strong empirical support for the NTS model compared to the

conventional Black–Scholes version, we suspect that NTS–based quanto–

option valuation is also more reliable—though, this will be subject of future

research.

5 Conclusion

We have proposed an approach to pricing European quanto options based

on the multivariate normal tempered stable (NTS) model. This allows us to

capture both fat–tailedness and asymmetric dependence between the returns

of the underlying asset and exchange rate. For an empirical illustration, we
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have estimated the market and the risk–neutral parameters for a quanto con-

struction involving the Nikkei 225 index as underlying asset and the Japanese

yen and U.S. dollar exchange rate. Whereas—based on two goodness–of–fit

criteria—the Black–Scholes model is clearly rejected by the data, the NTS

model could not be rejected at any reasonable confidence level. Quanto call

and put prices derived for both the estimated NTS and the conventional

Black–Scholes models turn out to differ substantially, with the NTS model

giving rise to higher prices, as it pays more attention to the tail behavior of

the instruments involved. Empirical analyses with observed quanto option

transaction data and comparisons with alternative quanto pricing strategies

are subject of future research.
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URL www.optioncity.net/pubs/ExpLevy.pdf

21



Marsaglia, G., Marsaglia, J., 2004. Evaluating the Anderson-Darling distri-

bution. Journal of Statistical Software 9 (2), 1–5.

Marsaglia, G., Tsang, W., Wang, G., 2003. Evaluating Kolmogorov’s distri-

bution. Journal of Statistical Software 8 (18).

Morales, L., 2007. The dynamic relationship between stock prices and ex-

change rates: evidence from four transition economies., paper presented
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