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Abstract

We consider a new robust parametric estimation procedure, which minimizes

an empirical version of the Havrda-Charvát-Tsallis entropy. The resulting

estimator adapts according to the discrepancy between the data and the

assumed model by tuning a single constant q, which controls the trade-off

between robustness and efficiency. The method is applied to expected re-

turn and volatility estimation of financial asset returns under multivariate

normality. Theoretical properties, ease of implementability and empirical re-

sults on simulated and financial data make it a valid alternative to classic

robust estimators and semi-parametric minimum divergence methods based

on kernel smoothing.
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1. Introduction

Many decision-making and asset pricing models in finance rely on assump-

tions on the stochastic model underlying the data. The multivariate normal

assumption is one of the most popular, as mean and covariance estimates are

sufficient for computing the Markowitz’s mean-variance (MV) optimal port-

folio allocation (Markowitz, 1952). However, for a typical sample of financial

returns, the empirical distribution deviates in various amounts from normal-

ity. Figure 1 shows a normal quantile plot for the Standard & Poor’s 500

(S&P500) log-return. While the bulk of the observations follows normality

fairly closely, many values in the tails are far to meet such an assumption.

Between these two extremes, there is an interesting portion of observations,

which departs from normality in various degrees.

Statistical regularities of financial returns, such as the leptokurtic non-

robust behavior, volatility clustering and the asymmetry gain/losses (Cont,

2001), have often lead to discard the normal model in favor of more so-

phisticated representations (Bauwens et al., 2006; Zhao, 2008). However, an

increased model complexity adds huge costs in terms of interpretability, sta-

bility of parameter estimates and model calibration (Zhao, 2008). A valid

alternative is to retain a simple stochastic model, while making the estimation

method sensitive to the amount of information carried by each observation

relative to the assumed model. Under this viewpoint, the classic maximum

likelihood estimator (MLE) equally weights each observation, it is highly

non-robust and some of its desiderate properties – such as efficiency – are

not trustworthy in presence of deviations of the data from the assumed model

(Huber, 1981; Hampel et al., 1986). In practice, bad estimates translate into
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Figure 1: QQ-plot of monthly log-returns of the S&P500 stock index (Period: January

1871- August 2008).

undesirable decisions of asset allocation due to the asset weights sensitivity to

the estimates (Best and Grauer, 1991). Instead, classic robust methods and

minimum-divergence based methods allow for discriminating the amount of

information carried by each observation, thus providing reasonable estimates

even in presence of deviations from the assumptions.

Much work has been devoted to construct portfolios not overly affected

by deviations of the data from the multivariate normal model. One line

of research aimed to improve the stability of portfolio weights by employing

classic robust estimators of the mean and variance. These contributions differ

mainly for the type of estimator employed: Vaz-de Melo and Camara (2005)
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use M-estimators, Perret-Gentil and Victoria-Feser (2005) use S-estimators

and Welsch and Zhou (2007) use minimum covariance determinant (MCD)

and winsorization. Lauprete et al. (2002) perform parameter estimation and

portfolio optimization in a single step based on M-estimation of the covari-

ance matrix. DeMiguel and Nogales (2009) consider portfolios based on both

M- and S-estimators and provide analytical bounds for the sensitivity of the

investment strategy to changes in the parametric assumptions. Although

these contributions have the merit to address the role of robust estimation

for improving MV portfolios, traditional robust estimators still suffer dra-

matic losses of efficiency compared to maximum likelihood. This issue is

crucial in multivariate problems with a large number of parameters.

In a different direction, our work is developed within a minimum diver-

gence framework, i.e. considering minimization of some appropriate data-

based divergence between an assumed model and the true model density

underlying the data. Depending on the choice of the divergence, minimum

divergence estimators can afford considerable robustness at minimal expense

of efficiency. Beran (1977) was a pioneer of divergence methods for robust-

ness, putting forward the well-known Minimum Hellinger Distance Estimator

(MHDE), which can tolerate about 50% of bad data and yet maintaining first-

order efficiency. Subsequent developments include those of Basu and Lindsay

(1994) and Lindsay (1994). All the above approaches, however, require non-

parametric density estimation, which is troublesome in multi-dimensional

problems.

In this paper, we consider an estimator of location and scale obtained by

minimizing a family of quasi-logarithmic density divergences. The methodol-
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ogy is motivated from an information-theoretical perspective, since it amounts

to minimize an empirical version of Tsallis-Havrda-Charvát (HCT) entropy

(Havrda and Charvát, 1967; Tsallis, 1988) or q-entropy. The resulting esti-

mator, named Maximum Lq-Likelihood Estimator (MLqE) was introduced

by Ferrari and Yang (Ferrari and Yang, 2009) in the context of small proba-

bility estimation. A Fisher-consistent version of MLqE and its infinitesimal

robustness properties are examined by Ferrari and La Vecchia (2009).

The MLqE is appealing as it conciliates efficiency and robustness as-

pects, usually requiring distinct techniques. The former is prioritized when

the model is thought to be appropriate for the data at hand, while the latter

is stressed when it is not. The behavior of the MLqE depends on a single

parameter q, which controls such a trade-off. When the data are consis-

tent with normality – or other model specification – and q → 1, the MLqE

corresponds to the MLE. When q < 1, the estimator gains robustness, yet

maintaining considerable efficiency. If q = 1/2, the MLqE is a minimizer

of a version of the Hellinger distance, which has the perk of not involving

degrees of nonparametric analysis. This aspect is valuable as it avoids the

difficulties related to bandwidth selection in multiple dimensions, which is

instead required by MHDE.

The estimator can be applied to any parametric family. An important

feature of the MLqE is that the extent to which each observation is an outlier

is determined in terms of the model itself. The method relies on minimizing

a weighted version of the log-likelihood function, where the weights are pro-

portional to the (1− q)th power of the assumed density. As a consequence,

a simple and fast algorithm based on a re-weighting strategy for computing
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MLq estimates is provided. For the multivariate normal case, the steps of

the algorithm reduce to a simple variable transformation. A fast procedure

for the optimal choice of q is proposed, making the new method attractive

not only for its theoretical properties but also for its ease of implementability

and fast convergence.

Section 2 describes the q-entropy minimization approach and the loca-

tion/scale estimator. In Section 3, we provide the asymptotics and robust-

ness properties of the estimator. In Section 4, we report empirical results on

simulated data. In Section 5, we focus on financial data and MV portfolio

allocations. In Section 6, we discuss our findings and suggest future research

directions.

2. q-entropy minimization

Let G be the class of all distributions with pdf g and support X ∈ Rp,

p ≥ 1 with respect to the Lebesgue measure. Further, let F (Θ), Θ ∈ Rk,

k ≥ 1 be a parametric family of target distributions with densities f on X .

The distribution generating the data is regarded as close but not exactly

equal to some member of F (Θ). Here, we consider f to be a multivariate

normal density with mean vector µ and covariance matrix Σ. The current

approach, however, can be applied to other target models. For example, t-

Student and stable Paretian distributions are common alternatives in finance

to capture the leptokurtic behavior of the financial returns. The overall

parameter vector as θ′ = (µ′, vech(Σ)′) ∈ Rk, where k = p+ p(p+ 1)/2.
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Consider the power divergence between g(x) and f(x;θ):

Dq(θ; g) = −1

q

∫
g(x)Lq

{
f(x;θ)

g(x)

}
dx, (1)

where Lq(u) = (u1−q − 1)/(1− q), u > 0, if q ∈ (−∞,∞) \ {1}. When q = 1,

the integrand is undefined and we set log(·) = limq→1Lq(·), recovering the

Kullback-Leibler (KL) divergence

D1(µ,Σ; g) =

∫
1

2
(x− µ)′Σ−1(x− µ)g(x)dx− 1

2
log |Σ|+ const.

By the Law of Large Numbers, given data xi, i = 1, . . . , n, the above ex-

pectation is approximated by the empirical distribution of the data. The

minimizer is the MLE, which is optimal when g = f . For financial returns,

however, since such a requirement is not met, asymptotic consistency and

efficiency of the MLE are unreliable.

If q = 1/2, (1) is twice the Hellinger distance: 2
∫

[f 1/2(x;θ)−g1/2(x)]2dx.

Beran (1977) considered minimizing such a quantity, introducing the semi-

parametric MHDE. Later, Basu and Lindsay (1994) and Lindsay (1994) ex-

tended Beran’s approach to the general case q 6= 1. Although these methods

were shown to be highly robust and fully efficient at the model, their im-

plementation requires non-parametric smooth estimate ĝh of g, provided a

proper choice of the bandwidth h. In multivariate settings, as for correlated

financial data, choosing h is often challenging. In addition, the curse of di-

mensionality makes this approach impracticable even for a moderate number

of variables.

These issues can be avoided by approaching minimization of (1) indirectly.

We consider minimization of the q-entropy functional

Hq(θ; g) = −
∫
g(x)Lq {f(x;θ)} dx. (2)
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This is equivalent to minimize D(θ; g∗), where g∗(x) = g1/q(x)/
∫
g1/q(x)dx

is a power-transformed version of the true density (see Lemma 1, Ferrari and

La Vecchia (2009)). Therefore, a transformation on the estimates in order to

recover consistent estimates for the right target g is required. An important

advantage is that Eq. (2) can be simply approximated by the Law of Large

Numbers, without any density smoothing.

The previous considerations motivate the following estimating functional:

T (g) = Ψq

(
arg min

θ∈Θ
{Hq(θ; g)}

)
, (3)

where Ψq ∈ Rk×k is a diagonal matrix such that diag(Ψq)j = 1 for j =

1, . . . , p and diag(Ψq)j = q−1 for j = p+1, . . . , k, where k = p+p(p+1)/2. Let

θ0 denote the unique minimizer of (1), representing the parametric density

closest to g in the sense of the power divergence Dq. The transformation

Ψq ensures Fisher-consistency, of T (·), i.e. T (f(·;θ0)) = θ0 (Ferrari and

La Vecchia, 2009).

3. A fully parametric estimator

Ferrari and Yang (2009) introduce the MLqE in the context of small

tail probability estimation. In this paper, we consider the following re-

centered version of the MLqE of θ0 = (µ′0, vechΣ′0) in order to obtain Fisher-

consistency.

θ̂q,n = Ψq

(
arg max

θ∈Θ

n∑
i=1

Lq {f(xi;θ)}

)
. (4)

The above estimator entails solving the estimating equations

0 =
n∑
i=1

f(xi;θ)1−qu(xi;θ), (5)
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where u(x,θ) = ∇θ log f(x;θ) denotes the maximum likelihood score vector.

For estimating µ the rescaling matrix Ψq is the identity matrix, while for Σ

the final solution involves dividing by q. When q = 1, Lq(·)→ log(·), Ψq = Ik

and θ̂1,n is actually the MLE of θ0. The estimator in (4) is related to the

robustification strategy proposed by Windham (1995). However, Windham

applies model-based re-weighting to a general estimating function. Here, we

focus on the particular case where the estimating function is actually the

score function.

3.1. Properties

3.1.1. Asymptotics and standard errors

For fixed q, the solution of Eq. (5) is an M-estimator and the asymptotic

distribution of MLqE can be derived from existing theory (Hampel et al.,

1986). Let x1, . . . ,xn be independent observations from g. As n → ∞: (i)

There exists a sequence θ̂q,n such that θ̂q,n converges to θ0 in probability.

(ii) For any consistent sequence θ̂q,n,
√
n(θ̂q,n−θ0) converges in distribution

to a multivariate normal with zero mean vector and covariance

Vq(θ, g) = J−1
q (θ, g)Kq(θ, g)J−1

q (θ, g), (6)

where Jq,Kq ∈ Rk×k are defined as

Kq(θ, g) = Eg[f(x;θ)2(1−q)u(x,θ)u(x,θ)′], (7)

Jq(θ, g) = −ΨqEgf(x;θ)1−q[(1− q)u(x,θ)u(x,θ)′ +∇θu(x,θ)]. (8)

The above expressions follow directly from Theorems 5.14 and 5.41 in Van der

Vaart (1998). If q = 1 and the model is correctly specified, i.e. g(x) =

f(x,θ0), one can see that Kq(θ0) = Jq(θ0)−1Jq(θ0)−1 and Vq(θ0) is just
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the inverse of Fisher information matrix. Consistent estimates of Vq can

be obtained by computing Huber’s sandwich estimator (Huber, 1981) by

replacing the distribution of the data instead of g in the expressions (7)

and (8) and computing V̂q(θ̂q,n) = Ĵq(θ̂q,n)−1K̂q(θ̂q,n)Ĵq(θ̂q,n)−1/(n − 1).

First order and second order derivatives characterizing the integrands can be

obtained by numerical differentiation. Estimates of the variance of the MLqE

and confidence intervals for smaller sample sizes can be also computed using

standard re-sampling techniques such as bootstrap.

3.1.2. Local robustness

We focus on small deviations from normality by assuming that g = gε be-

longs to the contaminate family (1− ε)Np(µ0,Σ0) + ε∆x, where 0 ≤ ε < 1/2

represents the proportion of data from the unknown contaminating distribu-

tion and ∆x is Dirac’s Delta function, placing the entire mass on a single

point.

A useful tool to study the sensitivity of the estimator to data contam-

ination is represented by the influence function, IF: Rk 7→ R defined as

IF(x, T (gε)) = ∂T (gε)/∂ε|ε=0 whenever the limit exists. The first-order Von

Mises expansion gives an approximation of the bias as: Bias = T (gε)− θ0 ≈

ε IF(x, T (gε)). Therefore, a bounded IF implies that the estimator has also

bounded asymptotic bias. A standard calculation (e.g., see Hampel et al.

(1986)), gives:

IF(x, θ̂q,n) = −J−1
q (θ0)

[
f(x;θ0)1−qu(x,θ0)

]
. (9)

When q = 1, the IF is just proportional to the score function u(x,θ). In the
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case of the mean and covariance estimates of N(µ,Σ),

IF(x, µ̂1,n) = x− µ, and IF(x, Σ̂1,n) = (x− µ)(x− µ)′ −Σ. (10)

Clearly, the IFs above expressions are unbounded in x. Therefore, under

contamination, we expect large biases. For q < 1, however, Eq.(9) gives

bounded IFs:

IF(x, µ̂q,n) ∝ d(x) exp
{
−(1− q)||d(x)||2/2

}
(11)

IF(x, Σ̂q,n) ∝ [d(x)d(x)′ −Σ] exp
{
−(1− q)||d(x)||2/2

}
, (12)

where d(x) = Σ−1/2(x−µ). Note that for the multivariate normal, (11) and

(12) define re-descending estimators, meaning that the IFs approach to zero

as ||x|| → ∞. This is clearly seen in Figure (3.1.2), where we represent the

IFs (11) and (12) up to a rescaling constant for a bivariate normal with zero

mean and identity covariance matrix.

3.1.3. Global robustness: breakdown at the edge

Global robustness is assessed by computing gross-error breakdown point

as defined in (Hampel et al., 1986), which is the value 0 ≤ ε < 1/2 of the

contamination at which the estimator still gives some relevant information

about the model parameters. Consider maximizing the estimating function

over the target parameters m and S:

ψ(m,S) =

∫
gε(z)Lq{f(z; m, q−1S)}dz

=
1− ε
1− q

∫
f(z;µ,Σ)f(z; m, q−1S)1−qdz

+
ε

1− q

∫
∆x(z)f(z; m, q−1S)1−qdz− 2

1− q
. (13)
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Figure 2: IFs for normal distribution N2(0, I). (a) IF for the first component of the mean.

(b) IF for an element of the covariance matrix.

To evaluate the first term in (13), we use the following result which is

derived using straightforward integration∫
f(z;µ,Σ)f(z; m, qS)αdz =

exp {−α(m− µ)′(I + αW)−1(m− µ)/2}
det (I + αW)1/2(2π)(αp)/2(det qS)α/2

,

where W = qΣS−1. The integral with respect to the Dirac measure in the

second term of (13) is f(x; m,S)1−q. Therefore, for given q < 1, maximizing

(13) is equivalent to maximize

(1− ε)
exp

{
− (1−q)

2
(m− µ)′(I + (1− q)W)−1(m− µ)

}
(2π)(1−q)p/2 det (I + (1− q)W)1/2(det qS)(1−q)/2

+ ε
exp {− (1−q)

2
(x−m)′S−1(x−m)}

(2π)(1−q)p/2 det (qS)(1−q)/2 . (14)
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Note that for ||x|| → ∞, (14) consists basically of the two ridges

det (W)(1−q)/2ε at m = x, (15)

det (W)(1−q)/2(1− ε)
det (I + (1− q)qW)1/2

at m = µ. (16)

If the covariance is known, S = Σ and breakdown occurs when the maximum

is at m = x, i.e. ε > [1 + (1 + q − q2)p/2]−1. If S 6= Σ, the ridge at m = x is

larger at m = µ if and only if

ε > [1 + det(I + q(1− q)W)1/2]−1 ≥ [1 + (1 + q(1− q)λ∗)p/2]−1,

where λ∗ = λmaxΣ /λminS , and λmaxΣ , λminS are the maximum and minimum

eigenvalues of Σ and S, respectively. Therefore, if q is fixed and λminS → 0,

the function ψ is unbounded for any ε > 0, meaning that scale and location

breakdowns occur for any amount of contamination. However, if we define

a sequence of the tuning constants depending on p such that qp → 0, as p

grows and qp(1− qp)λ∗ ≈ c for some constant c, then breakdown occurs only

when ε > [1 + (1 + c)p/2]−1. Particularly, if qp = o(λ∗), c→ 0 and breakdown

occurs when ε ≥ 1/2.

3.2. Computational aspects and choice of q

For a given q 6= 1, (5) can be viewed as a weighting process of the log-

likelihood score. Consequently, a simple re-weighting algorithm is easily de-

rived for computing the estimates. Let s ∈ {0, 1, . . . , s∗} denote the iteration

step.

1. If s = 0 ,

µ(s) and Σ(s) are set to be robust estimates of location and scale;
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2. For 0 < s < s∗ ,

µ(s) =
∑n

i=1 v
(s−1)
i xi, Σ(s) = q−1

∑n
i=1 v

(s−1)
i (xi − µ(s))(xi − µ(s))′,

where

v
(s)
i =

f(xi;µ
(s),Σ(s))1−q∑n

i=1 f(xi;µ(s),Σ(s))1−q
.

Particularly, if q 6= 1, the above procedure provides a relative-to-the-model

downweighting. Observations that disagree sensibly with the model receive

low weight. If q = 1, all the observations receive the same weight and the pro-

cedure is maximum likelihood estimation. For more details on general con-

vergence behavior of re-weighting algorithms see Arslan (2004) and Maronna

et al. (2006), p.331.

Different values of q correspond to estimators with different robustness

and efficiency levels. Thus, having a reasonable strategy for selecting q is

crucial. One approach is to choose q < 1 with largest empirical efficiency.

We consider the ratio Λ(q,θ0, g) = V1(θ0, g)V−1
q (θ0, g), where Vq is as in

(6). Since θ0 and g are unknown, in practice we consider a grid of distortion

parameters Q = {q1, . . . , qr} and compute the corresponding MLqE estimates

θ̂q1,n, . . . , θ̂qr,n. Then, pick q∗ such that q∗ = maxq∈Q tr{Λ̂(q, θ̂q,n, dGn)}

where Gn is the empirical distribution of the data. In a similar context,

Windham (1995) pointed out the relationship between convergence rate of

the estimates and empirical efficiency. Thus, he suggested a choice of the

tuning parameter using an upper bound for empirical efficiency computed

using the convergence rate of the estimates.

Typically, values of q between 1/2 and 1 work well: (i) For q > 1, the

estimator has large bias. This is not surprising as the influence functions

(11) and (12) are unbounded for such values. Conversely, for q < 1 the bias

14



decreases as q gets smaller. This is confirmed by our simulations. (ii) For

q sufficiently small, usually smaller than 1/2, the estimator gains consid-

erable robustness. In this case, the estimator’s variance increases sensibly.

Moreover, the empirical convergence of the re-weighting algorithm above gets

slower for values near or below 1/2, especially when p gets larger. (iii) From

our simulations in multivariate settings, as p gets large and det (Σ) gets

smaller – as is the case for strongly correlated data – q near 1/2 is required

to maintain sufficient robustness.

4. Monte Carlo simulations

We perform an extensive simulation study in order to: (i) investigate

the efficiency and robustness for various levels and types of contamination,

dimensions of the parameter space and sample sizes (ii) evaluate the perfor-

mance with respect to other well-known robust methods. Given a sample of

size n, we generate B samples where about (1 − ε)n observations are from

Np(µ0,Σ0), while a smaller portion εn is from the contaminating distribution

Np(µc,Σc). To gauge performance, we compute the mean squared error with

respect to µ0 and Σ0.

We consider: (i) the MLqE when q is selected by the re-weighting method

(see Section 3); (ii) the fully parametric MHDE computed using the MLqE

with q = 1/2; (iii) the MLE; (iv) the semi-parametric MHDE based on

nonparametric estimation (only for p=1 as the nonparametric analysis for

choosing the bandwidth in higher dimensions is cumbersome and the conver-

gence of ĝh(x) has shown to be slower for p > 1); (v) the Huber Estimator,

with re-descending
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influence function (Campbell, 1980). Particularly, the MHDE uses non-

parametric kernel density estimate ĝh(x) to minimize the Hellinger Distance.

We use Epanechnikov kernel with bandwidth h = sncn, where cn = 0.5 and

sn = (0.6745)−1median(|xi −median(Xi)|) (e.g. see Bhandari et al. (2006)).

Huber’s estimator has been implemented as in Campbell (1980), so that the

influence function is bounded and re-descending for large values of the Ma-

halanobis distance. This type of implementation allows direct comparisons

with our estimator because the weights of extreme atypical observations tend

to be zero (Hampel et al., 1986).

4.1. Univariate location and scale

We set p = 1, µ0 = 0, Σ0 = 1 for B = 1000 Monte Carlo samples of size

100, 500 and 1000, with contaminations {5%, 10%, 20%, 30%}.

Contaminated location. Table 1 reports the mean squared errors for θ

when µc = 2, 4, 6, 8 and Σc = Σ0. The MLqE with optimal q or q = 1/2

are always outperforming the MLE, MHDE and Huber estimators; when the

contamination is small (ε = 5%, 10%), the MLqE with q = 1/2 is performing

best if the contaminating model is not located far from the true model (µc =

2, 4), while the MLqE with optimal q beats the other methods when the

true and contaminated density are clearly distinct (e.g.: µc = 6, µc = 8).

By increasing the level of contamination (ε = 20%, 30%), the MLqE with

q = 1/2 tends to outperform all other estimators since the larger percentage

of outliers tends to increase the bias in the estimates and the distance between

the contaminated and the true model plays a minor role.

Contaminated scale. Table 2 shows the mean squared errors for θ when

Σc = 2, 4, 6, 8 and µc = µ0. This type of contamination generates a strong
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ε = 5%

µc MLE MLqE MLqE (q = 1/2) MHDE Huber

2 0.053 (0.001) 0.020 (0.000) 0.009 (0.000) 0.013 (0.000) 0.031 (0.001)

4 0.625 (0.005) 0.007 (0.001) 0.006 (0.000) 0.013 (0.000) 0.075 (0.002)

6 3.019 (0.014) 0.004 (0.000) 0.006 (0.000) 0.010 (0.000) 0.008 (0.000)

8 9.425 (0.033) 0.004 (0.000) 0.006 (0.000) 0.010 (0.000) 0.008 (0.000)

ε = 10%

µc MLE MLqE MLqE (q = 1/2) MHDE Huber

2 0.177 (0.002) 0.072 (0.001) 0.023 (0.001) 0.037 (0.001) 0.130 (0.002)

4 2.242 (0.011) 0.087 (0.006) 0.007 (0.000) 0.045 (0.001) 1.094 (0.010)

6 10.882 (0.034) 0.005 (0.000) 0.006 (0.000) 0.023 (0.001) 5.6353 (0.0208)

8 33.938 (0.082) 0.004 (0.000) 0.006 (0.000) 0.022 (0.000) 9.1128 (0.0379)

ε = 20%

µc MLE MLqE MLqE (q = 1/2) MHDE Huber

2 0.586 (0.004) 0.275 (0.002) 0.118 (0.001) 0.158 (0.001) 0.538 (0.004)

4 7.223 (0.025) 1.663 (0.008) 0.011 (0.000) 0.499 (0.003) 6.768 (0.025)

6 34.592 (0.078) 1.211 (0.066) 0.007 (0.000) 0.441 (0.010) 33.748 (0.078)

8 107.199 (0.189) 0.034 (0.017) 0.007 (0.000) 0.099 (0.001) 106.443 (0.191)

ε = 30%

µc MLE MLqE MLqE (q = 1/2) MHDE Huber

2 1.077 (0.006) 0.596 (0.003) 0.366 (0.003) 0.405 (0.002) 1.034 (0.006)

4 12.815 (0.039) 3.434 (0.007) 0.040 (0.003) 1.771 (0.006) 12.768 (0.039)

6 60.459 (0.124) 9.153 (0.019) 0.008 (0.000) 4.077 (0.012) 60.686 (0.125)

8 186.698 (0.285) 17.829 (0.053) 0.008 (0.000) 6.943 (0.023) 187.472 (0.286)

Table 1: Mean squared errors and standard errors (in parenthesis) for θ in univariate

location contaminated models (µc = 2, 4, 6, 8) and different levels of contamination (ε =

5%, 10%, 20%, 30%) and n=500. Best results are in bold.
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ε = 5%

Σc MLE MLqE MLqE (q = 1/2) MHDE Huber

2 0.031 (0.001) 0.006 (0.000) 0.006 (0.000) 0.008 (0.000) 0.010 (0.000)

4 0.632 (0.014) 0.005 (0.000) 0.006 (0.000) 0.009 (0.000 ) 0.012 (0.000)

6 3.332 (0.060) 0.005 (0.000) 0.006 (0.000) 0.010 (0.000) 0.011 (0.000)

8 10.756 (0.199) 0.005 (0.000) 0.006 (0.000) 0.010 (0.000) 0.011 (0.000)

ε = 10%

Σc MLE MLqE MLqE (q = 1/2) MHDE Huber

2 0.100 (0.002) 0.014 (0.000) 0.008 (0.000) 0.012 (0.000) 0.031 (0.001)

4 2.342 (0.032) 0.008 (0.000) 0.007 (0.000) 0.017 (0.000) 0.063 (0.001)

6 12.868 (0.163) 0.007 (0.000) 0.007 (0.000) 0.019 (0.000) 0.037 (0.001)

8 40.822 (0.528) 0.006 (0.000) 0.007 (0.000) 0.020 (0.000) 0.029 (0.001)

ε = 20%

Σc MLE MLqE MLqE (q = 1/2) MHDE Huber

2 0.377 (0.005) 0.048 (0.001) 0.016 (0.000) 0.030 (0.001) 0.161 (0.003)

4 9.203 (0.087) 0.016 (0.000) 0.013 (0.000) 0.059 (0.001) 0.576 (0.010)

6 49.431 (0.455) 0.012 (0.000) 0.010 (0.000) 0.069 (0.001) 0.505 (0.010)

8 163.059 (1.513) 0.010 (0.000) 0.008 (0.000) 0.071 (0.001) 0.312 (0.008)

ε = 30%

Σc MLE MLqE MLqE (q = 1/2) MHDE Huber

2 0.845 (0.009) 0.118 (0.002) 0.032 (0.001) 0.063 (0.001) 0.450 (0.006)

4 20.484 (0.162) 0.154 (0.013) 0.029 (0.001) 0.170 (0.002) 3.742 (0.049)

6 109.913 (0.826) 0.030 (0.006) 0.019 (0.001) 0.215 (0.002) 6.649 (0.141)

8 362.255 (2.662) 0.016 (0.000) 0.014 (0.000) 0.233 (0.002) 5.224 (0.190)

Table 2: Mean squared errors and standard errors (in parenthesis) for θ when considering

univariate contaminated models (Σc = 2, 4, 6, 8) and different levels of contamination

(ε = 5%, 10%, 20%, 30%) and n=500. Best results are in bold.
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overlap between the outliers and the main bulk of the data, which makes

it hard to detect. The empirical results support the MLqE with optimally

chosen q when ε is small, while the MLqE with q = 1/2 should be preferred

when ε is large (ε = 20, 30%). This agrees with our theoretical findings re-

lated to the breakdown point. Inspecting more closely the results, we notice

that when increasing the level of contamination ε, the automatic procedure

for selecting q determines q = 1/2 as optimal value most of the time, but still

not always. Although the MHDE can compete with the MLqE for small ε,

the Huber estimator with re-descending influence function is always under-

performing and explodes when ε is large.

4.2. Multivariate location/scale

We considered multivariate scale/location normal distributions with p =

2, 5, 10, 20, 50, ε = 5%, 10%, 20%, 30%, n = 100p and B = 1000. We set

µ0 = 0 and Σ0 is a p × p matrix with variances equal to 1 and covariances

all equal to ρ = 0.2. Tables 3 and 4 show the results when µc = − 4 and

Σc = 4Σ0 and Σc = 8Σ0, respectively. As in the univariate case, the MLqE

with optimal q or q = 1/2 tends to outperform the other estimators for

various p and ε. Huber is outperforming them only for a small level of con-

tamination (ε = 5%) and with p = 10, 20, 30. When ε increases, the MLqE

with q = 1/2 is clearly superior to all the others. However, we notice that

the automatic procedure to choose the optimal q lead to identify q = 1/2

as optimal value quite easily when ε is small and the number of variates p

increases. In fact, increasing p leads to datasets with observations that tend

to gather around the mean. This makes the separation of outliers from the

rest of the observations a difficult task. In such situations the MLqE has
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remarkable performance also for a large number of variates and a high per-

centage of outliers. On the other hand, the task appears to be more difficult

when ε and the number of variates is small and the outliers are overlapping

with the clean data.

The simulations suggest that the MLqE can provide a valid alternative

in robust estimation when compared with other estimators. In fact, the

MLqE estimator with optimal selected q and with q = 1/2 can deal with a

whole range of situations in terms of (i) degree of overlapping between the

outliers and the data,(ii) fraction of outliers and (iii) number of variates.

The multivariate analysis suggest that the MLqE with q = 1/2 should be

preferred when the number of dimension p is large, the percentage of outliers

ε is large and they are distant from the main bulk of data, as we expected

also from the theoretical analysis on the breakdown point. On the other

hand, when p and ε are small and outliers are only partially overlapping with

the clean data, the use of the MLqE with iterative choice of the optimal q

should be preferred.

5. Applications to financial data

Despite the conterfactual empirical evidence, mainly due to the presence

of the so-called stylized facts, the gaussian model for asset returns is still

appealing for its simplicity and a common choice among practitioners, as in

the case of Markowitz’s mean-variance portfolio allocation. Divergence-based

methods, such as the MLqE, could then represent an interesting solution: (i)

They allow to keep a relatively simple representation, as the normal one,
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ε = 5%

p MLE MLqE MLqE (q = 1/2) Huber

2 1.135 (0.015) 0.033 (0.001) 0.044 (0.001) 0.207 (0.003)

5 0.774 (0.004) 0.007 (0.000) 0.147 (0.001) 0.133 (0.001)

10 0.659 (0.002) 0.079 (0.000) 0.079 (0.000) 0.104 (0.000)

20 0.632 (0.001) 0.054 (0.000) 0.054 (0.000) 0.079 (0.000)

50 0.615 (0.000) 0.040 (0.000) 0.040 (0.000) 0.066 (0.000)

ε = 10%

p MLE MLqE MLqE (q = 1/2) Huber

2 3.973 (0.037) 0.034 (0.001) 0.042 (0.001) 1.592 (0.018)

5 2.755 (0.010) 0.007 (0.000) 0.272 (0.002) 0.947 (0.005)

10 2.373 (0.005) 0.108 (0.001) 0.108 (0.001) 0.646 (0.002)

20 2.279 (0.002) 0.066 (0.000) 0.066 (0.000) 0.477 (0.001)

50 4.194 (0.003) 0.092 (0.001) 0.092 (0.001) 0.627 (0.001)

ε = 20%

p MLE MLqE MLqE (q = 1/2) Huber

2 12.761 (0.084) 2.764 (0.148) 0.581 (0.016) 9.948 (0.071)

5 8.972 (0.025) 1.974 (0.033) 1.221 (0.006) 6.493 (0.020)

10 7.683 (0.010) 3.735 (0.006) 0.223 (0.001) 4.480 (0.008)

20 7.360 (0.005) 0.082 (0.000) 0.082 (0.000) 3.134 (0.004)

50 7.136 (0.005) 0.053 (0.001) 0.053 (0.001) 2.103 (0.002)

ε = 30%

p MLE MLqE MLqE (q = 1/2) Huber

2 22.962 (0.122) 6.012 (0.297) 5.752 (0.083) 21.074 (0.117)

5 16.043 (0.035) 5.942 (0.099) 4.889 (0.019) 14.287 (0.033)

10 13.675 (0.016) 9.128 (0.012) 0.645 (0.003) 11.307 (0.015)

20 13.045 (0.008) 5.088 (0.004) 0.103 (0.000) 9.220 (0.006)

50 4.934 (0.429) 0.022 (0.002) 0.022 (0.002) 2.567 (0.223)

Table 3: Mean squared errors and standard errors (in parenthesis) for vech(θ) when con-

sidering multivariate contaminated models (Σc=4Σ0), µc = −4, ρ=0.2) with different size

p and different levels of contamination (ε = 5%, 10%, 20%, 30%) and n=10p. Best results

are reported in bold.
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ε = 5%

p MLE MLqE MLqE (q = 1/2) Huber

2 1.628 (0.026) 0.032 (0.001) 0.043 (0.001) 0.165 (0.003)

5 0.936 (0.006) 0.007 (0.000) 0.157 (0.001) 0.077 (0.001)

10 0.741 (0.003) 0.086 (0.000) 0.086 (0.000) 0.042 (0.000)

20 0.678 (0.001) 0.059 (0.000) 0.059 (0.000) 0.031 (0.000)

50 0.632 (0.001) 0.040 (0.000) 0.040 (0.000) 0.023 (0.000)

ε = 10%

p MLE MLqE MLqE (q = 1/2) Huber

2 5.480 (0.060) 0.033 (0.001) 0.041 (0.001) 1.123 (0.015)

5 3.363 (0.015) 0.007 (0.000) 0.247 (0.001) 0.500 (0.003)

10 2.675 (0.007) 0.114 (0.000) 0.114 (0.000) 0.282 (0.001)

20 2.439 (0.003) 0.073 (0.000) 0.073 (0.000) 0.183 (0.000)

50 2.283 (0.002) 0.049 (0.000) 0.049 (0.000) 0.124 (0.000)

ε = 20%

p MLE MLqE MLqE (q = 1/2) Huber

2 18.357 (0.144) 0.179 (0.049) 0.346 (0.008) 10.314 (0.095)

5 11.078 (0.039) 0.863 (0.053) 0.777 (0.004) 5.065 (0.022)

10 8.743 (0.016) 1.862 (0.045) 0.172 (0.001) 2.551 (0.006)

20 7.882 (0.008) 0.090 (0.000) 0.090 (0.000) 1.463 (0.002)

50 7.362 (0.008) 0.058 (0.000) 0.058 (0.000) 0.850 (0.001)

ε = 30%

p MLE MLqE MLqE (q = 1/2) Huber

2 34.059 (0.218) 3.151 (0.277) 9.232 (0.253) 27.530 (0.193)

5 20.315 (0.055) 3.124 (0.151) 2.956 (0.012) 15.218 (0.045)

10 15.818 (0.023) 5.130 (0.052) 0.335 (0.001) 9.795 (0.016)

20 14.150 (0.012) 3.573 (0.004) 0.101 (0.000) 6.114 (0.006)

50 24.327 (0.026) 0.121 (0.001) 0.121 (0.001) 6.414 (0.008)

Table 4: Mean squared errors and standard errors (in parenthesis) for vech(θ) when con-

sidering multivariate contaminated models (Σc=8Σ0, µc = −4, ρ=0.2) with different size

p and different levels of contamination (ε = 5%, 10%, 20%, 30%) and n=10p. Best results

are reported in bold.
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with a reliable fit to the data, instead of pursuing estimation of more com-

plicated models, often leading to unstable estimates. (ii) Tuning the param-

eter q allows for a flexible treatment of time periods with different volatility

regimes. When the volatility is low, the data are typically well approximated

by the normal model, so choosing q near 1 gives efficient estimates. When

the volatility is high, choosing q closer to 1/2 prevents larger downward (or

upward) movements of prices to inflate the bias of the estimates. Section

5.1 and 5.2 report the analysis of univariate and multivariate financial data,

respectively. In particular, Section 5.2 shows how the MLqE could lead to

build attractive investment strategies in a mean-variance framework.

5.1. Standard & Poor’s 500 data

We apply our method to 1651 monthly observations of the log-return of

the S&P 500 from January 1981 to August 2008. The returns are centered

around zero, are leptokurtic with a longer left tail (the sample median, skew-

ness and kurtosis are 0.0054, -0.3285 and 14.4584, respectively). In Table

5, we report the mean and standard deviation estimates computed by the

different methods described in Section 4. The MLqE with optimally selected

q and with q = 1/2 gives larger mean and smaller standard deviations es-

timates than those obtained using MLE and Huber. The semi-parametric

MHD estimate of the mean value is the largest, while the standard deviation

is between the MLq estimate with q = 1/2 and that with optimally chosen

q.

In Figure 3, we show that the MLqE weights observations according to

their closeness to the assumed model. Extreme observations (both positive

and negative), which would overly affect the final estimates, are given nearly
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Figure 3: S&P500 Monthly Returns versus data weights.

zero weight. Since larger losses tend to occur more frequently – and with

larger absolute value – than larger gains, the process of smooth re-weighting

of all the observations results in larger expected returns and more conserva-

tive volatility estimates. The distribution of the data weights for q = 1/2 has

skewness=-0.89 and kurtosis=-0.42, while the one for the weights for the opti-

mally chosen q has skewness=-1.87 and kurtosis=3.21. This is not surprising

given that setting q = 1/2, which is equivalent to minimize a version of the

Hellinger distance, provides more conservative estimates by downweighting

a larger amount of observations.

Finally, we compute a sequence of estimates for the expected returns
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MLqE MLqE MLE Huber MHDE

q 0.7 0.5 1 – –

µ 0.0064 0.0071 0.0034 0.0043 0.0074

σ 0.0330 0.0314 0.0406 0.0342 0.0323

Table 5: Expected return (µ) and volatility (σ) estimates for monthly S&P 500 (January

1981 – August 2008).

and volatilities using moving windows of 120 observations and rolling ahead

12 months at the time. The estimates are computed by the MLq method

with optimally chosen q. Figure 4 shows clearly that the automatic choice

of the optimal q allows for a flexible treatment of periods characterized by

high (low) volatility and by a large (small) proportion of anomalous data.

Actually, q near 1/2 is automatically selected in time periods characterized by

negative economic events, such as the end of the Postwar Boom (1920-1921),

the Great Crash (1929-1932), World War II and the Postwar period, the first

and second oil shocks (1973 and 1981), the Black Monday (1987) and the end

of dot.com (2000-2002), etc. Therefore, a stronger robustification provides

more reliable long-term estimates in stressful economic periods. This also

successfully validates the procedure for automatic selection of q.

5.2. Mean-variance portfolio allocation

Markowitz (1952) opened the road to modern investment theory by intro-

ducing the mean-variance (MV) approach for optimally building portfolios

of p assets. Assuming that asset returns are normally distributed with loca-

tion vector µ and scale Σ, the portfolio expected return can be computed as

rp(w) = w′µ, while the portfolio expected variance is σ2
p = w′Σw, where w
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Figure 4: S&P500 Price Annual Returns and Optimal q Values (Period: December 1881-

December 2007).

is the p × 1 vector of asset weights. Markowitz’s approach relies on deter-

mining the Pareto front of the optimal portfolios by solving a multiobjective

optimization problem, where the targets are to minimize the portfolio’s vari-

ance while maximizing the portfolio expected returns subject to the budget

constraint ι
′
w = 1, where ι is a p × 1 vector of ones. Then, for a given

investor’s risk aversion γ > 0, the optimization problem can be solved as

arg max
w

rp(w)− γ

2
σ2
p(w) s.t. ι

′
w = 1 (17)

Different values of γ yield different investment strategies and determine
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all the optimal portfolios which define the Pareto front or the so-called mean-

variance efficient frontier. The optimal MV portfolio obtained by solving (17)

is

w∗γ(µ,Σ) = γ−1Σ−1

(
µ− (λ2(Σ)− γ)ι

λ1(Σ)

)
. (18)

where λ1 = ι′Σ−1ι, λ2(Σ) = ι′Σ−1µ. The global minimum variance portfo-

lio (GMV), which corresponds to the extreme risk aversion, is then w∗∞ =

limγ→∞w∗γ = Σ−1ι/ι′Σ−1ι.

The estimates of the optimal portfolio are defined by plugging-in the MLq

estimates in Eq.(18) and computing ŵ∗q = w∗γ(µ̂q,n, Σ̂q,n). By continuity of

ŵ∗q, the properties for the MLqE of µ and Σ discussed in Section 3 are readily

extended to the plug-in estimator ŵ∗q as well (see details in Appendix).

5.2.1. Empirical Analysis

We analyze 339 monthly log-returns of 8 MSCI Indexes (USA, Japan,

Pacific EX JP, France, Germany, Italy, Spain, UK) from January 1981 to

April 2009. Estimates of the mean and covariance computed for different

estimators are used to determine the Pareto front. In Figure 5, we show that

the MLq estimates for the expected return are larger than ML estimates (left

plot). Moreover, the MLqE gives more conservative estimates of the index

variances (right plot). Huber robust estimates of the variance are similar to

MLq estimates with q = 1/2, but closer to the ML estimates for the expected

return.

In Figure 6, we show the Mahalobis distances of data using the MLq, ML

and Huber estimates. The MLqE determines several points with relatively

larger distances than for ML and Huber estimates. Thus, the MLqE smoothly
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Figure 5: Expected Returns Estimates (left) and Variance Estimates (right) for the 8

MSCI Indexes (1: USA, 2: Japan, 3: Pacific ex Jp, 4: France, 5: Germany, 6: Italy, 7:

Spain and 8: UK).

enhances the degree of outlyingness of each observation relative to the others,

allowing for a finer detection of data inconsistent with the normal model. In

Figure 7, we plot the efficient frontiers when short selling is allowed (−1 ≤

wi ≤ 1, i = 1, . . . , p). The frontiers of the MLqE dominate those of ML

and Huber, yielding portfolios with larger (in-sample) expected returns and

smaller (in-sample) risk. Similar findings were obtained in case of no short

selling.

We set-up a dynamic investment strategy and assess both in- and out-of-

sample performances. We consider a rolling window scheme, where we hold

the GMV portfolio and update its allocation every month using new esti-

mates. The minimum variance portfolio is a typical choice as a benchmark

for comparing different methods, since it is the least affected by the expected

return estimates and possible large fluctuations due to the instability in the

optimization process (Best and Grauer, 1991). The expected returns and
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Figure 6: Mahalobis Distances with respect to MLE, Huber, MLqE and MLqE (q = 1/2)

estimates.

covariance matrix estimates were obtained by using the different methods

on window of 60 observations. The out-of-sample performance is evaluated

by computing the one-month-ahead portfolio return (for a total of 279 out-

of-sample returns). The out-of-sample variance of the portfolio is computed

using the optimal weights determined in-sample and covariance matrix esti-

mate computed on 60 consecutive observations (including the out-of-sample

1-month-ahead observation). Figure 8 shows the boxplots of in- and out-

of-sample returns and variances for GMV portfolios. The distributions of

in-sample MLq returns are centered on larger values than those for MLE and
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Figure 7: Mean-Variance Efficient Frontier with short selling. Period: January 1981- April

2009.

Huber, while the distributions of out-of sample returns are similar. Interest-

ingly, however, the distributions of the portfolio variances for the MLqE are

much less spread for both in- and out-of-sample setups.

The MLqE gives minimum-variance portfolios with slightly improved out-

of-sample annualized mean returns, but also slightly larger volatility of the

out-of-sample portfolio returns time series (see Table 6). The skewness and

kurtosis coefficients of the out-of-sample returns, are much smaller for MLq

estimates. Interestingly, this reveals that GMV portfolios are more robust to

extreme fluctuations than those obtained by plugging-in the ML and Huber

estimates. Hence, investor’s trading strategies appear to be less affected by

extreme risks.
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q

Annualized

Volatility

(%)

Annualized

Mean Return

(%)

Skewness Kurtosis

MLqE Opt. 1.094 0.170 -1.094 7.838

MLqE 1/2 1.137 0.171 -1.193 7.568

MLE 1 0.985 0.157 -1.521 9.345

Huber – 1.104 0.154 -1.554 9.933

Table 6: Out-of-sample annualized volatility and mean return, skewness and kurtosis of

the GMV portfolios using the MLqE, MLq with q = 1/2, MLE and Huber estimates.

6. Discussion and further research

In this work, we have studied parametric estimation based on minimiza-

tion of the q-entropy and use it to estimate expected returns and volatilities

of financial assets.

From a methodological viewpoint, the MLqE has several advantages for

parametric density estimation: (i) Its behavior is characterized by well-

established theoretical properties, which can be easily extended to the port-

folio weights of the optimal allocation determined in a mean-variance frame-

work. (ii) It provides a feasible way to use power-divergences and Hellinger

distance, which otherwise would require nonparametric density estimation.

All the complications of bandwidth selection and curse of dimensionality

make the latter impracticable in many multivariate financial problems. (iii)

The user can flexibly tune the trade-off between efficiency and robustness by

a single parameter q. (iv) It can be easily implemented by a simple and fast

procedure that automatically re-weights outliers depending on their closeness

to the assumed model and also computes the optimal tuning parameter q.
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Our theoretical findings and simulation results have shown that the MLqE

can handle different types and levels of contamination. The automatic choice

of q treats conveniently a range of situations: q close to 1 should be preferred

when the data are nearly clean in order to retain accuracy. These values

also correspond to negligible loss of efficiency compared to the MLE. When a

portion of observations disagree with the assumed model, moving q towards

1/2 increases the robustness of the estimates.

The procedure works well when p is moderate. However, when the num-

ber of correlated variables is large compared to the sample size and q is far

from 1, the algorithm in Section 3.2 may give sub-optimal results. In our

view, more work to make computations feasible when p is large would be

valuable. Moreover, inspecting the performance of other methods for opti-

mal selection of tuning parameter q is of order. For example, one could use

measures of the worst-case scenario bias (gross error sensitivity) or minimize

approximations of the mean squared error under an ε-amount of contami-

nation. Other strategies such as computing bootstrap estimates the mean

squared error of the estimates or standard cross-validation methods should

be explored as well.

Our empirical investigation on financial data has shown that robust divergence-

based methods, such as the MLqE, are appealing for providing a reliable fit

to real world data while keeping simple models, as the normal one. This

could be a valuable alternative to unstable estimates of complex models.

Our analyses show that the MLqE works well in presence leptokurtic data,

asymmetry gain/losses and different volatility regimes.

The analysis of S&P500 and of the classic mean-variance portfolio allo-
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cation strategy, have pointed out that our long-term investment strategies

are less exposed to extreme risks and can be used to detect switches among

volatility regimes. In fact, tuning the parameter q allows for a flexible treat-

ment of different time periods: when the volatility is low, the data are typ-

ically well approximated by the normal model, so choosing q near 1 gives

efficient estimates; when the volatility is high, choosing q closer to 1/2 pre-

vents larger downward (or upward) movements of prices to inflate the bias of

the estimates. Further applications on different data, time-horizons and on

a larger number of assets with more realistic trading strategies (e.g. includ-

ing transaction costs) are of high priority in our agenda. Finally, although

the focus here is on unconditional multivariate normal models, MLq estima-

tion can be readily extended to richer stochastic representations for modeling

time-dependency of the observations.

Appendix A. Properties for the MV portfolio

Appendix A.1. Asymptotics

By continuity of ŵ∗q, the properties for the MLqE of µ and Σ discussed

in Section 3 can be extended to the plug-in estimator ŵ∗q as well. Given

observations x1, · · · ,xn from g, applying the multivariate Delta Method (e.g.

see Van der Vaart (1998) ), we have that any consistent sequences of estimates

µ̂q,n and Σ̂q,n, yield

√
n(ŵ∗q,n −w∗)

D→ Np (0,D(θ0, G)) , as n→∞, (A.1)

with asymptotic variance

D(θ, G) = [∇θw
∗
γ(θ)]′Vq(θ, G)[∇θw

∗
γ(θ)] (A.2)
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where Vq can be computed by using the unbiased estimate (3.1.1). Moreover,

∇θw
∗
γ(θ) is a p×k block diagonal matrix with the following diagonal blocks.

Each block can be computed using

∇µw∗ = γ−1(I−w∗∞ι
′)Σ−1. (A.3)

and the derivative of w∗ with respect to vech(Σ) is

∇vec(Σ)w
∗ ={γ−1[(µ′ ⊗ I)−w∗∞(µ′ ⊗ ι′)] (A.4)

+ λ−1
1 (γ−1λ2 − 1)[(µ′ ⊗ I)−w∗∞(ι′ ⊗ ι′)]}(Σ−1 ⊗Σ−1).

Appendix A.2. Bounded influence function

As far as concerns robustness, boundness of the influence function for

scale and location and global robustness can be easily transferred to the

plug-in estimator. Recall that computing an IF for µ and Σ entails differ-

entiating the functional T (gε) with respect the contamination ε and evaluate

at ε = 0. Thus, to compute the IF for the MV portfolio, chain-differentiating

w∗λ(T (Gε)) with respect to the contamination ε and evaluating at zero gives

IF (x, ŵ∗q,n) = −Σ−1IF (x; Σ̂q,n)w∗γ + γ−1Σ−1{IF (x; µ̂q,n) (A.5)

+ λ−1
1 [ι′Σ−1IF (x; Σ̂q,n)Σ−1µ− ι′Σ−1IF (x; µ̂q,n)]ι (A.6)

− λ−2
1 (λ2 − γ)[ι′Σ−1IF (x; Σ̂q,n)Σ−1ι]ι}. (A.7)

since x appears only in the IF terms of the above expression. For q < 1,

since both IFs for scale and location are bounded, the IF for the investment

strategy is bounded as well. However, this is not the case if q = 1, because the

asymptotic bias can be infinitely large when serious deviations from model

assumptions occur.
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Figure 8: Boxplots of in-sample and out-of-sample GMV Portfolio Returns and Variance.
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