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Abstract

Motivated by the application to German interest rates, we propose a time-varying autore-
gressive model for short and long term prediction of time series that exhibit a temporary
non-stationary behaviour but are assumed to mean revert in the long run. We use a
Bayesian formulation to incorporate prior assumptions on the mean reverting process in
the model and thereby regularize predictions in the far future. We use MCMC-based
inference by deriving all full conditional distributions and employ the Gibbs Sampler
to sample from the posterior (predictive) distribution. By combining data-driven short
term predictions with long term distribution assumptions our model excels in predictive
performance in comparison to the Gauss2++ model used in the insurance industry for
the given application.
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1. Introduction

To forecast an univariate time series the first model of choice is often a linear model.
A very basic example of this model class in the context of time series analysis is the
autoregressive model of order 1 (AR(1)), which is defined as follows:

xt = α+ βxt−1 + εt (1)

where xt represents the observed variable at time point t and α and β are real valued
constants, while |β| < 1 is assumed to ensure stationarity. The innovation process εt can
be, e.g., a Gaussian white noise process, i.e. εt ∼ N (0, σ2).
Linearity is often an excessively strict assumption in practice and many time series ex-
hibit features that can not be captured by a linear model [Hamilton, 1989]. In the last
decades a lot of research has been conducted to introduce different types of nonlinear
models. A bilinear model is an example of a nonlinear model type, which assumes a
nonlinear relationship between the covariates and response variable (see, e.g., [Granger
et al., 1978] and [Subba Rao and Gabr, 1984]), although not often used in macroeco-
nomic applications [Morley, 2009]. A more typical approach is to allow one (or more)
parameters of a linear model to change over time. This comprises the regime switching
and time-varying parameter models.

The first approaches to regime switching models were conducted by [Quandt, 1958], who
considered a switching regression model extending a linear regression model by allowing
the parameters to switch according to a random variable. [Bacon and Watts, 1971] intro-
duced a smooth transition model, which implements a smooth transition from one regime
to another without a sudden jump. [Goldfeld and Quandt, 1973] introduce the Markov
switching regression model and use a discrete latent Markov process to determine the
current regime. These models were adapted to time series models by Lim and Tong
[1980] and Chan and Tong [1986] introducing the threshold autoregressive model (TAR)
and the smooth transition autoregressive model (STAR), respectively. [Hamilton, 1989]
introduced the Markov switching autoregressive model for applications in economics.
These are amongst the most famous regime switching models used in macroeconomics
and have been investigated thoroughly together with different variants in the literature
[Haggan and Ozaki, 1981], [Teräsvirta, 1994], [Jansen and Teräsvirta, 1996]. [Lanne and
Saikkonen, 2002] used a TAR-model, which only allows regime changes for the constant
parameter α and applied it to strongly autocorrelated time series data.

In contrast to regime switching models, which allow the parameters to take a finite
number of states, time-varying parameter models allow one (or more) of the parameters
in a linear model to be driven by its own continuous process [Morley, 2009]. For exam-
ple, if the parameter vector (α, β, σ2) of the linear AR(1) model becomes a stochastic
process, this results in a time-varying autoregressive model of order 1 (TV-AR(1))

xt = αt + βtxt−1 + εt (2)
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with εt ∼ N (0, σ2
t ). Certain distribution assumptions for the underlying stochastic

process of the parameter vector (αt, βt, σt) are made in practice to complete the TV-
AR(1) model specification [Teräsvirta et al., 2010]. Similar to the TAR model in [Lanne
and Saikkonen, 2002] the time variation of the TV-AR(1) model can be restricted to
the constant parameter αt, resulting in a time-varying constant autoregressive model of
order 1 (TVC-AR(1)):

xt = αt + βxt−1 + εt. (3)

If |β| < 1 and the latent process of αt is mean reverting, the model is stationary. But
due to random shifts in the mean reversion level – because of the time-varying constant
parameter – realizations of the model can resemble those of a (close to) random walk
process, when restricting to a limited time window.

Strong autocorrelation and (close to) random walk behaviour of actual stationary time
series is exactly the time-series feature we will address in this work. Using a linear (near)
integrated process to model these time series might not account for characteristics valid
according to economic theory. As Lanne and Saikkonen point out, an impulse response
function would imply a very slow mean reversion inconsistent with properties of many
economic variables [Lanne and Saikkonen, 2002]. Also, the behaviour in the very long
horizon might be unrealistic. A (near) integrated process, e.g. applied to interest rates
or unemployment rates, might lead – due to its large variance – to extreme values in
the long run never observed in the past. Furthermore, estimating the model parameters
of a near integrated but stationary process might include large estimation errors if the
sample size is not very large. We therefore consider a nonlinear model, which allows for
a time varying mean reversion level. Specifically, we propose a Bayesian TVC-AR(1)
model, which is still stationary but has linear properties similar to an integrated or
nearly integrated process due to a stochastic mean reversion level. Furthermore, the
Bayesian approach allows us to regularize the long run distribution of the time series
without affecting the short-term distributions adversely.
The novelty of our approach lies in the proposed Bayesian framework that allows (1) a
model with linear properties in accordance with economic theory, (2) the possibility to
regularize the long run distribution by using prior assumptions and (3) if applied e.g.
to interest rates an improved forecasting performance in the short horizon compared
to commonly used linear models in practice. Moreover, we place particular emphasis
on the interpretability of the model structure and prior parameters allowing to include
expert knowledge or assumptions in accordance with economic theory about the long
run behaviour of a time series into the model in a sound mathematical way.

The paper is arranged as follows. Section 2 specifies the Bayesian TVC-AR(1), including
the derivation of required full conditional posterior distributions and the application of
the Gibbs Sampler for statistical inference. In Section 3 we discuss an application of our
model to interest rate data and compare the forecasting performance as well as the long
run distribution of our nonlinear model with the dynamic Nelson-Siegel Model and the
Gauss2++ Model, which is the industry standard in the insurance industry.
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2. A Bayesian TVC-AR(1) model for long run regularisation

In this Section we introduce the Bayesian TVC-AR(1) (BTVC-AR(1)) model. The
model incorporates assumptions about the long term behaviour of the time series and
thereby regularises the process in the long horizon. At the same time, the model is
mainly driven by the given data in the short run and thus fosters a good short- and
long-term prediction.

2.1. The BTVC-AR(1) model

The BTVC-AR(1) model is defined as follows:

xt = αt + βxt−1 + εt, (4)

where β represents the mean reversion speed and |β| < 1 to secure stationarity. εt is
assumed to be a Gaussian white noise process, i.e. εt ∼ N (0, σ2). We further specify αt
as a Gaussian mean reverting process specified by its unconditional expectation θ and
covariance structure Σ, i.e.

α = (α1, α2, ..., αt) ∼ Nt(θ,Σ). (5)

The Bayesian approach considers the parameters of the model (4) as random variables.
For β|σ2 a truncated normal distribution with lower bound l(σ2) and upper bound u(σ2)
is assumed as a prior, i.e.

β|σ2 ∼ N (µβ, σ
2
β, l(σ

2), u(σ2)).

The prior distribution for σ2 is an inverse gamma distribution with shape and scale
parameter, a and b, i.e.

σ2 ∼ IG(a, b).

These two prior distributions are conjugate priors for the model (4) and therefore allow
an analytical derivation of the corresponding full conditional distributions. Additionally,
the truncation parameters l(σ2) and u(σ2) of the β-prior depend on σ2 to control the
unconditional variance of the model. This is further elaborated in Section 2.2.
The parameters θ and covariance structure Σ might be assumed fixed or subject to
further prior distributions. In the latter case the specified distribution of α in (5) holds
only conditional on θ and Σ. A suitable choice for these hyperparameters is discussed
in Section 2.2 in the case of an AR-covariance structure.

Using these priors the defined model can also be seen as a Bayesian version of the TVC-
AR(1) Model. While the framework is flexible to assume various covariance structures
for α, we here present insightful arguments when assuming an AR-covariance structure
and thereby demonstrate the properties of our framework.
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2.2. Further prior assumptions

The goal of our Bayesian approach is to regularize the distribution in the long forecasting
horizon without affecting the short term distribution adversely. Assumptions about the
long term mean and the long term variance can be incorporated into the model via the
prior distributions of the parameters of the latent α-process.

Long term mean. In order to regularize the model’s long run mean, we define θ
to be a fixed value ϑ · 1. Whereas the local long run mean at time point t of the
BTVC-AR(1) Model amounts to

µloct =
αt

1− β ,

setting the unconditional expectation of α to ϑ · 1 leads to a long run mean of ϑ
1−β . We

here assume the data to be centered around a prior specified expected long run mean.
By setting θ = 0, i.e., ϑ = 0, this long run mean is reached in expectation after reshifting
the centralized data.

Long term variance. If we assume that α has an AR-covariance structure, Σ is
specified by the parameters ρ and τ2 representing the correlation of two successive time
steps and the conditional variance, respectively. The long run variance of the model is
then given by

V ar(xt) =
σ2

(1− β2)
+

τ2(1 + ρβ)

(1− ρβ)(1− β2)(1− ρ2)
(6)

For given ρ, β and σ2 and a prior assumption, the variance of xt can be solved for τ2.
While our model itself has two sources of variance (the residual term of the AR1 model
and the latent α-process), we can find a suitable value for one of the variance terms, here
τ2, by specifying a realistic value of the long term variance V ar(xT ) for a pre-defined
horizon T . In doing so, equation (6) can be solved for τ2. Let denote the solution by
τ̃2. By setting the conditional prior distribution of τ2 to

τ2|ρ, β, σ2 ∼ δτ̃2 (7)

where δ denotes a degenerated distribution with point mass 1 at τ̃2, the prior specified
long term variance V ar(xT ) is reached.

Apart from regularizing the long run distribution, we want to capture the (close to)
random walk behaviour of a (nearly) integrated time series. This behaviour of an actu-
ally stationary process can be a hint of a missing variable [Lanne and Saikkonen, 2002],
which we assume leads to changes of the mean reversion level in a linear AR(1) model.
We therefore apply the TVC-AR(1) model, which incorporates all these missing fun-
damental information into the latent α-process. The time-varying constant leads to a
time-varying mean reversion level and the slower the time varying mean reversion level
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changes the more pronounced the (close to) random walk behaviour will be. The speed
of mean reversion of the α-process is determined by ρ, which represents the correlation
between two successive time steps of the latent α-process. We therefore choose a normal
distribution truncated below by −1 and from above by 1 as a prior for ρ, i.e.

ρ ∼ N (µρ, σρ,−1, 1) (8)

If ρ is close to 1, the α-process has a very weak mean reversion itself leading to slow
changes of the original process’ mean reversion level and to a pronounced (close to) ran-
dom walk behaviour.

Another aspect related to the (close to) random walk behaviour is the variance of the
time varying mean reversion level. If we set τ2 to 0 the α-process reduces to a constant
process and the resulting model is a linear AR(1) model with variance

σ2

(1− β2)
.

Therefore, the second term in (6) can be regarded as an additional variance source
coming from the stochastic α. The greater the proportion of the second term the more
variance of the original process is explained by the time-varying mean reversion level
and the more pronounced the (close to) random walk behaviour – under the assumption
of ρ being close to 1. A prior assumption about the amount of variance coming from
each of the two stochastic sources can be incorporated through the conditional prior
β|σ2 by imposing a minimum and a maximum share, ϕmin and ϕmax, of a target long
run variance. Based on (6) these shares can be defined by

ϕmin =

σ2

(1−l(σ2)2)

V ar(xT )
ϕmax =

σ2

(1−u(σ2)2)

V ar(xT )
,

where the denominator is the pre-defined long term variance and the nominator corre-
sponds to the first term of (6) evaluated at the two truncation limits.

2.3. Model Characteristics

The time-varying α parameter in the BTVC-AR(1) Model allows to model stationary
time series, which exhibit a strong autocorrelation and a (close to) random walk be-
haviour. In figure (1) a linear AR(1) Model and the BTVC-AR(1) Model have been
exemplary fitted to a simulated stationary time series, which shows exactly such a be-
haviour. We estimate two AR(1) Models, one by imposing no restrictions or one by
setting the constant parameter of the model to 0 to regularize the long run mean. In
the left graphic the ”historic” time series can be seen as well as the expected future de-
velopment according to the three models. The mean reversion level of the unrestricted
AR(1) Model lies far away from the historic domain. The AR(1) Model with the pa-
rameter restriction forces the time series back to the pre-specified mean reversion level.
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The BTVC-AR(1) Model also has a long run mean of 0, but as the mean reversion is
time-varying it allows the time series to follow the current trend for a couple of time
steps before mean reverting to 0. The average latent mean reversion level extracted
during the simulation process is visualised in the right picture. It can be seen that it lies
below the last observation having caused the downturn in the last time steps. The mean
reversion level then slowly reverts back to 0 in expectation. Because of this time-varying
mean reversion level the BTVC-AR(1) Model can better account for longer deviations
from the long run mean, which leads to a (close to) random walk behaviour. It further
accounts for local trends leading to good short-term predictions and allows at the same
time to incorporate long run assumptions about the time series in a sound mathematical
approach.

(a) (b)

Figure 1: A comparison of a linear AR(1) model with no restritions for the constant
parameter, a linear AR(1) model with restrictions to the constant parameter
and a BTVC-AR(1) model applied on a simulated time series.

2.4. Bayesian Inference

The main parameters of interest in the BTVC-AR(1) model are α̃, β and σ2 with α̃
extending α by future time points up to the modelling horizon h, i.e.

α̃ = (α1, ..., αt, ..., αt+h).

This extension is necessary to sample from the predictive posterior distribution of the
parameters and generate forecasts. The prior distribution of α̃ incorporates the same
assumptions as the prior distribution of α, i.e.

α̃ ∼ Nt+h(θ̃, Σ̃)
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where

θ̃ = ϑ1 and Σ̃ =




Σ Πt+1 . . . Πt+h

Π>t+1 σ2
α

...
. . .

Π>t+h σ2
α




with Πt+j = {Cov(αt+j , α1), . . . ,Cov(αt+j , αt+j−1)}>, i.e. the vector of covariances of
αt+j and all previous time points 1, . . . , (t + j − 1). For these time points the same
covariance parameterization as for the prior of α, e.g., an autoregressive assumption,
is assumed for consistency. σ2

α represents the unconditional variance of the latent α-
process.
The goal of Bayesian inference is to find the joint posterior distribution, p(α̃, β, σ2|x),
conditional on the observed data x = (x1, ..., xt). If the full conditional distribution
of all parameters is known, the Gibbs sampler can be used to draw samples from this
joint posterior distribution and inference can be based on Monte Carlo approximation
(see e.g., [Chib, 2001]). Assuming (conditional) independence of the different model
components, it holds

p(α̃|β, σ2, x) ∝ p(x|α̃, β, σ2) · p(α̃) = L(α̃, β, σ2) · p(α̃). (9)

Due to the conditional independence induced by the Markov assumption in the AR(1)
model the likelihood of the parameters is given by

L(α̃, β, σ2) = p(x|α, β, σ2) =

t−1∏

j=0

G(xt−j |αt−j + βxt−j−1, σ
2). (10)

where G(·|µ, σ̃2) denotes the density function of a normal distribution with expectation
µ and variance σ̃2. With (9) and (10) and the prior distributions specified in Section 2.1
the full conditional distributions of α̃, β and σ2 can be derived analytically. Under the
assumption that θ̃ = 0 as specified in Section 2.2 to regularize the long run mean, the
full conditional distribution of α̃ is given by

α̃|β, σ2, x ∼ Nt(µ̃post, Σ̃post).

with

µ̃post = Σ̃postδ̃
1

σ2
and Σ̃post =

(
Σ̃
−1

+
1

σ2

(
It 0
0 0

))−1

.

δ̃ is hereby defined by

δ̃ = (x2 − βx1, . . . , xt − βxt−1, 0, . . . , 0).

As δ̃ incorporates data information up to time point (vector entry) t, is 0 afterwards
and Cov(αt+j , αt) −→ 0 with increasing j, the mean of the full conditional distribution
tends to 0, corresponding to the unconditional mean of the prior distribution. The co-
variance structure of the full conditional distribution behaves analogously. Therefore,
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the distribution of αt+j | x, β, σ2 tends to the prior distribution. This means that the
prior distribution of α effectively regularizes the distribution of x in the long horizon
towards the pre-specified mean of the latent process.
Note that the derivations are independent of the specific choice of Σ. If prior distri-
butions for the parameters of the Σ̃ are employed, we need to further condition on the
hyperparameters for the full conditional distribution of α̃.
Under the assumption as specified in Section 2.2, i.e. Σ̃ has an AR-covariance structure
with parameters ρ and τ2 with prior distributions (8) and (7) respectively, the full
conditional distribution of ρ is given by

ρ|α, τ2 ∼ N (µρ,post, σ
2
ρ,post,−1, 1)

where σ2
ρ,post =

(∑t−1
j=0 α

2
t−j−1

τ2
+ σ−2

ρ

)−1

and µρ,post =

(∑t−1
j=0 αt−jαt−j−1

τ2
+

µρ
σ2
ρ

)
σ2
ρ,post.

As the prior distributions of τ2 is a degenerated distribution, the corresponding full
conditional distribution is directly given.

The full conditional distribution of β is given by

β|x,α, σ2 ∼ N (µβ,post, σ
2
β,post, l(σ

2), u(σ2))

where σ2
β,post =

(∑t−1
j=0 x

2
t−j−1

σ2 + σ−2
β

)−1

and µβ,post =

(∑t−1
j=0 d̆t−jxt−j−1

σ2 +
µβ
σ2
β

)
σ2
β,post.

d̆t−j is defined by

d̆t−j := xt−j − αt−j .

The full conditional distribution of σ2 is given by an inverse gamma distribution with

parameters ã = t/2 + a and b̃ =
∑t−1
j=0 ε

2
t−j

2 + b, i.e.

σ2|α̃, β, x ∼ IG(ã, b̃).

A more detailed derivation of the full conditional distributions can be found in Appendix
A.2-A.5.

2.5. Markov Chain Monte Carlo Inference

To conduct inference, we use a Markov Chain Monte Carlo approach. More specifically,
as distributions of all full conditionals are known, we use the Gibbs sampler [see, e.g.,
Gelman et al., 2013]. To this end, a sample from the posterior distribution is drawn
by iteratively sampling from the conditional distribution of each parameter (vector). In
the BTVC-AR(1) model we use the Gibbs sampler in a first step to draw from the joint
posterior distribution p(α̃, β, σ2 | x).
In the following we assume again an AR-covariance structure for Σ determined by the
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parameters ρ and τ2 with prior distributions as specified in Section 2.2. Starting with
an initial sample (α(0), β(0), (σ2)(0), ρ(0), (τ2)(0)) we first draw a sample of α̃ values from
its full conditional distribution. We proceed with a sample for ρ, σ2 and β drawn from
their full conditional distribution respectively. Finally, τ2 is set according to (6) such
that a prior specified long run variance is met. A detailed description of the algorithm
can be found in the Appendix A.6.
After a burn-in period the parameter set (α̃(m), β(m), (σ2)(m)) is approximately dis-
tributed according to the joint posterior distribution p(α̃, β, σ2 | x). In a second and
final step, we use these sample to generate paths of the x-process

x
(m)
t+j = α

(m)
t+j + β(m)x

(m)
t+j−1 + εt+j , j > 0.

3. Application To Interest Rate Data

We now apply the BTVC-AR(1) Model to the first principal component (PC) of a prin-
cipal component analysis (PCA) on interest rate data to predict the term structure of
interest rates and compare it to the 2-Additive-Factor Gaussian (Gauss2++) Model [see,
e.g., Brigo and Mercurio, 2007] and the dynamic Nelson-Siegel Model [Diebold and Li,
2006] with respect to the forecasting performance and the long run distribution.
The Gauss2++ model is a popular short-rate model in the insurance industry, used, e.g.,
to classify certified pension contracts into risk classes. Because its mean reversion level
is calibrated to external interest rate forecasts, it generates realistic interest rates in the
very long horizon, which is a necessary model feature for insurance companies, as they
are obliged to calculate risk measures and performance scenarios for specific insurance
contracts for up to 40 years [European Union, 2017]. Nevertheless, Diebold and Li point
out that short-rate models perform poorly in forecasting [Diebold and Li, 2006]. Their
dynamic Nelson-Siegel Model in fact shows a better forecasting performance than the
Gauss2++ Model in the short horizon, but can produce unrealistic interest rates in the
very long horizon. Our model, which we call the BTVC-AR(1)-Factor Model in the fol-
lowing, combines both: a good forecasting performance in the short horizon and realistic
interest rates in the very long horizon. It further accounts for the strong autocorrelation
and the (close to) random walk behaviour of interest rates.

3.1. Data

We use data of the German term structure of interest rates estimated by the Deutsche
Bundesbank from prices of German government bonds. The exact estimation procedure
can be found in [Schich, 1997]. The time span ranges from September 1997 to August
2016. Figure (2) shows the monthly evolution of the interest rate curves.
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Figure 2: Time series of the term structure of German government bond yields.

In the last ten to fifteen years a decrease of the interest rates can be observed. Each
maturity represents a dimension in the data set. We use PCA to reduce the dimension of
the data set for the following reason. According to Litterman and Scheinkman [1991] a
three factor model can explain for each interest rate with a specific maturity a minimum
of 96% of the variability in the data.. We here extract these (principle) factors but only
use the first two to facilitate a fair comparison with the Gauss2++ model, which is a
two factor model. Furthermore, the first two PCs already account for more than 99%
of the variability in the given data. Figure (3) shows the loadings and the time series of
the two extracted PCs.
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Figure 3: The scores and the loadings of the first two PCs.

The loadings of the first PC are similar for all 20 maturities, while the loadings of
the second PC are positive for short and negative for long maturities. The first and
the second PC are therefore often interpreted as level and slope of the term structure,
respectively.
The decrease of the interest rates in the last years is also visible in the level factor showing
a downward trend. There is an ongoing discussion in the literature about mean reversion
of interest rates. Economic theory predominantly assumes that interest rates are (in the
long run) mean reverting. But statistical evidence is not so clear [van den End, 2011].
The mainstream literature says that unit roots can not be rejected, which would imply
that interest rates are not mean reverting [Siklos and Wohar, 1997], [Rose, 1988], [Stock
and Watson, 1988], [Campbell and Shiller, 1991]. More recent literature investigates the
unit root hypothesis by fractional integrated techniques that apply differencing to time
series by an order smaller than or greater than one [Baum et al., 2000], [Gil-Alana, 2004].
These studies find that shocks to interest rates have a long memory, which explains their
(close to) random walk behaviour.

3.2. Estimation of model parameters

In this Subsection the estimation of the BTVC-AR(1)-Factor Model and the two bench-
mark models is described.

3.2.1. Modelling interest rates with the BTVC-AR(1)-Factor model

The factors of our BTVC-AR(1)-Factor Model are the first two PCs extracted by a PCA
and interpreted as level and the slope of the interest rate curve. The level factor shows a
(close to) random walk behaviour, which can not be adequately captured by a stationary
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linear model. Following the economic theory view that interest rates (and therefore also
the level) are mean reverting (in the long run), we use therefore the BTVC-AR(1) Model
for this PC to account for the (close to) random walk behaviour as well as to regularize
the level of the interest rate curve in the long horizon. The slope factor is more stable
over time. As an augmented Dickey Fuller test suggests that the existence of a unit root
can be rejected, a linear AR(1) model is used for this factor. By modelling the level and
the slope factor interest rate forecasts r̂t(τ) with maturity τ can be calculated via

r̂t(τ) = µ(τ) + ξ1(τ)l̂t + ξ2(τ)ŝt, (11)

where l̂t and ŝt denote the forecasts of the level and the slope factor, respectively. ξ1(τ)
and ξ2(τ) denote the loading of the first and second PC for maturity τ . Before applying
the PCA the data has been centered and therefore µ(τ) is the mean interest rate of the
data set for maturity τ . We now specify the prior assumptions of the BTVC-AR(1)
model for the level factor.

Latent AR1 constant α. For this application we assume an AR-covariance structure
for the α-process of the BTVC-AR(1) Model with the parameters ρ and τ2 representing
the correlation of two successive time points and the conditional variance, respectively.
The unconditional mean of the α-process is set to 0, which implies the assumption that
the long run mean of the level factor is 0. Because we also assume that the slope factor
is a centered process this means that the long run interest rate curve converges in ex-
pectation to the average interest rate curve of the dataset.
Autocorrelation parameter ρ. As specified in Section 2.2 for ρ we assume a trun-
cated normal distribution with the parameters µρ = 0.98 and σ2

ρ = 0.012 with lower
truncation −1 and and upper truncation 1 as a hyper prior, i.e.

ρ ∼ N (0.98, 0.01,−1, 1)

The truncation ensures the stationarity of the process. Using this hyper-prior we incor-
porate the assumption of a weak mean reverting α-process into the model and therefore
allow the mean reversion level of the level factor to deviate from the long run mean
for longer periods. This yields the (close to) random walk behaviour present in (our)
interest rate data.
Variance of the latent process. According to Section 2.2 the parameter τ2 is set in
each iteration of the Gibbs Sampler such that the long run variance of the level factor
amounts to a pre-specified value. We here use the value 120, which is inferred from
a quantile of the unconditional distribution. By giving consideration of the rather un-
usual market situation of extremely low interest rates we make the assumption that the
last observation is equal to the 7.5%-quantile. As we know that due to the model’s as-
sumptions the unconditional distribution is normal with a mean of 0, the corresponding
unconditional variance can be easily calculated.
Slope parameter of the AR1-model. For β we assume that µβ = 0.95 and σ2

β = 0.12

representing a weak mean reversion to the time-varying mean reversion level. Further-
more as β regularizes the amount of variance that stems from the stochastic α-process,
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the lower and upper bound of its truncated normal prior is set in each sampling iteration
such that 90%−95% of the variance comes from the stochasticity of the α-process. This
elaborate choice incorporates the assumption that the (close to) random walk behaviour
stems from fundamental changes of the mean reversion level and that most of the devi-
ation of the level factor from its long run mean stems from these changes.
Residual variance. For the prior distribution of σ2 the shape and scale parameter a
and b are set to 0.5 and 2 respectively, representing an uninformative prior.

By specifying the parameters of the prior (and hyper-prior) distributions the full condi-
tional distributions can be analytically derived as described in Section 2.4 and paths of
the level factor can be generated using the Gibbs Sampler as explained in Section 2.5.
Forecasts of the level factor are then represented by the average of the simulated paths.

The linear AR(1) model for the slope factor is given by

st = c+ γst−1 + δt,

where γ is a real valued constant between −1 and 1 and δt is a Gaussian white noise
process, i.e. δt ∼ N (0, σ̆2). The constant parameter c is set to 0. The other parameters
are estimated by a standard ordinary least squares approach.

3.2.2. Modeling interest rates with the Gauss2++ model

The Gauss2++ Model is a popular interest rate model in the insurance industry used
for pricing interest rate derivatives as well as for risk management and forecasting pur-
poses. The model assumes that the short-rate r(t), which is the interest rate with an
infinitesimal small maturity, is given by the sum of two latent processes x(t) and y(t),
and a deterministic function ϕ(t):

r(t) = x(t) + y(t) + ϕ(t).

The latent processes are modelled by dependent Ornstein-Uhlenbeck processes, which
are the continuous version of a linear AR(1) process. Interest rates with longer maturities
are then derived from the short-rate via pricing the corresponding zero-coupon bonds,
which is analytically possible due to the model’s distributional assumptions.
The estimation process is materially different from the one of the other two models as it
does not use historic data but calibrates the model to current future market assumptions
(implicitly) provided by the current interest rate curve, interest rate derivatives as well
as interest rate forecasts. By applying the downhill simplex algorithm the parameters
of the model are chosen in such a way that forward rates – implicitly given by the
current interest rate curve – and swaption prices are met in expectation. The data has
been extracted from Bloomberg. Additionally the mean reversion level of the two latent
factors are analytically set such that two interest rate forecasts with a maturity of 3
months and 10 years, which are published by the OECD, are met in expectation. This
approach is in line with the standard calibration procedure in the insurance industry.
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3.2.3. Modeling interest rates with the dynamic Nelson-Siegel model

The dynamic Nelson-Siegel model of Diebold and Li applies specific time series models
to extracted latent factors. Diebold and Li tested several time series models on the level,
slope and curvature factors of the Nelson-Siegel interest rate curve and compared the
forecasting performance [Diebold and Li, 2006]. In this paper we follow one of their
approaches, in which they apply a PCA on interest rate data and use an univariate
linear AR(1) process for each of the first three PCs. Because of comparison reasons
to the other two two-factor models in this paper, we just use the first two PCs. The
parameters of the AR(1) model are estimated by the ordinary least squares method.

3.3. Backtest

We now compare the forecasting performance of the BTVC-AR(1)-Factor Model, the
Gauss2++ Model and the dynamic Nelson-Siegel Model and analyse their long run
distributions of the 10-year interest rate.

3.3.1. Comparison of the forecasting performance

For the out-of-sample backtest we apply an expanding window approach. The data of the
first 10 years of the observations are used to estimate the parameters of all three models
as described in the Section 3.2. We then forecast the interest rates for the maturities of
1, 3, 5 and 10 years (representing the interest rate curve) for the horizons of 1, 6 and 12
months. We expand the training sample by one month and repeat the procedure again.
This is done until 12 months before the last observation in the data set. To evaluate
the forecasting performance the error between the predicted interest rate r̂τ (t) and the
actual interest rate rτ (t) with the maturity τ is calculated, i.e.

errorτ (t) = rτ (t)− r̂τ (t)

Table (1)-(3) in the appendix A.7 show the mean and the standard deviation of this
error for each model. In addition, the root mean squared error

RMSE(τ) =

√√√√ 1

N

N∑

k=1

(rτ (k)− r̂τ (k))2. (12)

for the given deviation is calculated, where N is the number of forecasts conducted in
the backtest.

Except for the 1-month ahead forecast, the Gauss2++ Model shows the highest RMSE
for all maturities. For example, the 6-month ahead forecast of the 10-year interest rate of
the Gauss2++ Model has a RMSE, which is approximately twice as high as the RMSE
of the other two models. For the the 12-month ahead forecast it is more than three times
as high. This supports the statement of Diebold and Li that short-rate models perform
poorly in forecasting [Diebold and Li, 2006]. However, it should be mentioned that the
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performance of the Gauss2++ Model highly depends on the interest rate forecasts used
in the calibration process. Regarding the predominant negative mean suggests that the
OECD forecasts have been too optimistic in the past.
The results of the BTVC-AR(1)-Factor Model and the dynamic Nelson-Siegel Model are
more similar. For the forecasting horizon of 1-month the BTVC-AR(1)-Factor Model
shows a slightly lower RMSE except for the 10-year interest rate. For the 6-month and
12-month forecasting horizons the dynamic Nelson-Siegel Model shows a better perfor-
mance. Note that the dynamic Nelson-Siegel model anticipated the downward trend
present in the last years, which might have been beneficial in terms of the forecasting
performance in the past, but also produces unrealistic interest rates in the long hori-
zon. In contrast the BTVC-AR(1)-Factor Model forces the model to mean revert to a
pre-specified level to regularize the interest rates in the long horizon. The fact that the
RMSE error is similar to the dynamic Nelson-Siegel Model suggests that this does not
affect the forecasting performance in the short horizon much.

3.3.2. Comparison of the distribution in the long run

We further investigate the interest rate distribution in the very long horizon. This is
especially important for insurance companies as risk measures and performance scenarios
for their products have to be calculated for up to 40 years [European Union, 2017]. We
therefore fit all three models on all data points up to the last observation date of the data
set. We then simulate paths of the 10-year interest rate and visualize the distribution
in 40 years.
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Figure 4: Comparison of the distributions of the 10-year interest rate in 40 years mod-
elled by the dynnmic Nelson-Siegel Model, the Gauss2++ Model and the
BTVC-AR(1)-Factor Model.

The median of the dynamic Nelson-Siegel Model amounts to approximately -10%. A
value that is not realistic for the 10-year interest rate. In comparison, the distribution
of the BTVC-AR(1)-Factor model and the Gauss2++ model seem to be more realistic
as the range of their distributions is (mainly) positive between 0% and 10%. It can be
observed that the standard deviation of the Gauss2++ Model is much smaller than of
the BTVC-AR(1)-Factor Model and as the median is quite high negative values are not
reached by this model. This is due to the fact that the Gauss2++ Model assumes a
stronger mean reversion than historic data would suggest. The (close to) random walk
behaviour is better captured by the BTVC-AR(1)-Factor Model leading to a prediction
range which fits historic observations quite well. This is due to the regularization of
the mean and the standard deviation of the BTVC-AR(1)-Factor Model induced by
appropriate prior assumptions, which represents the main difference to other interest
rate models.

4. Conclusion

In this paper we introduced a new Bayesian framework for the TVC-AR(1) Model par-
ticularly suitable for nearly integrated time series which can not be estimated by a
linear model consistent with economic theory or historic observations. In these cases a
(close to) random walk behaviour can be an indication for a missing variable, for which
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we account for by the usage of a non-linear model. The time-varying constant of the
BTVC-AR(1) allows a stochastic mean reversion level leading to realizations, which ex-
hibit a random walk behaviour although being stationary and do not have an exploding
long run variance. Additionally, with the Bayesian approach it is possible to incorporate
prior assumption about the long run distribution into the model without affecting the
short-term predictions adversely. This gives the possibility to include expert knowledge
or well known economic facts about the long term behaviour of the time series into the
model that is otherwise fully data-driven in the short term forecast.
We apply the proposed approach to interest rate data. We find that the BTVC-AR(1)-
Factor Model, which applies a BTVC-AR(1) Model to the first PC of a PCA, shows a
similar forecasting performance as the dynamic Nelson-Siegel Model in the short horizon
but in contrast produces realistic interest rates in the very long horizon and also yields
better forecasts compared to the Gauss2++ Model, the industry standard interest rate
model in the insurance industry.
The presented framework allows for many different specifications and is flexible regarding
the assumed covariance structure of the latent α process in the model. In this paper we
propose an AR-covariance structure and explain how model parameters can be inferred
in this special case. Investigating other covariance structures could further improve the
forecasting performance in the short horizon while still regularizing the distribution in
the long run.
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A. Appendix

A.1. Rewriting the likelihood of the parameters

By defining d̆t−j := xt−j −αt−j , the likelihood of the parameters can be reformulated as
follows:

L(β, α, σ2) =
t−1∏

j=0

G(xt−j |αt−j + βxt−j−1, σ
2)

=

t−1∏

j=0

1√
2πσ2

exp

(
−(xt−j − αt−j − βxt−j−1)2

2σ2

)

=
t−1∏

j=0

1√
2πσ2

exp

(
−(d̆t−j − βxt−j−1)2

2σ2

)

=
t−1∏

j=0

1√
2πσ2

exp

(
−

(d̆2
t−j − 2βxt−j−1d̆t−j + β2x2

t−j−1

2σ2

)

∝
t−1∏

j=0

exp

(
− 1

2σ2

{
−2βxt−j−1d̆t−j + β2x2

t−j−1

})

= exp


− 1

2σ2



−2β

t−1∑

j=0

d̆t−jxt−j−1 + β2
t−1∑

j=0

x2
t−j−1






 .

A.2. The full conditional distribution of α̃

The prior distribution of α̃ is a centered Gaussian process with a specific covariance
structure, i.e.

α̃ = (α1, ..., αt, ..., αt+h) ∼ Nt(0, Σ̃)

The following derivations will be independent of the specific choice of Σ̃. We further
define V ar(αs) = τ2 ∀s ≥ 1. By defining

δj = xj+1 − βxj

as well as δ = (δ0, . . . , δt−1)> and the fact that

G(xt|αt + βxt−1, σ
2) = G(αt|δt−1, σ

2)
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allows a straightforward derivation of the full conditional of α:

p(α̃|β, σ2,x) ∝ p(x|α̃, β, σ2)p(α̃|β, σ2)

∝ p(x|α, β, σ2)p(α̃)

∝ exp

(
− 1

2σ2
(α− δ)>(α− δ)

)
· exp

(
−1

2
α̃>Σ̃−1α̃

)

∝ exp


−

1

2
(α̃>Σ̃−1

postα̃− 2α̃>Σ̃−1
postΣ̃postδ̃0

1

σ2︸ ︷︷ ︸
=:µ̃post

)




with Σ̃−1
post = Σ̃−1 + 1

σ2

(
It 0
0 0

)
and δ̃0 = (δ>,0)>.

This is the kernel of a multivariate Gaussian distribution with covariance Σ̃post and
mean vector µ̃post, i.e

α̃ | β, σ2,x ∼ N (µ̃post, Σ̃post).

A.3. The Full conditional Distribution of ρ

If an AR-covariance structure is assumed for α̃ the latent α-process can be written in
the following form

αt = ραt−1 + ηt,

where ρ determines the correlation between two successive time steps and ηt is a Gaussian
white noise process, i.e. ηt ∼ N (0, τ2).
The full conditional distribution of ρ can be therefore derived as follows:

p(ρ|τ2,α) ∝ L(ρ, τ2) · p(ρ) =
t−1∏

j=0

G(αt−j |ραt−j−1, τ
2) · p(ρ). (13)

The likelihood L(·) in the above equation can be reformulated as

L ∝ exp


− 1

2τ2



−2ρ



t−1∑

j=0

αt−jαt−j−1


+ ρ2



t−1∑

j=0

α2
t−j−1








 .

The calculation is similar to the one in appendix A.1. Defining the two terms in square
brackets as η and χ, respectively, we get

L ∝ exp

(
− 1

2τ2

{
−2ρη + ρ2χ

})
.

Plugging this into (13) and using a normal prior with parameters µρ, σ
2
ρ for ρ, we have

p(ρ|τ2, α) ∝ exp

(
−1

2

{
ρ2χ

τ2
− 2

ρη

τ2

})
exp

(
−1

2

{
ρ2

σ2
ρ

− 2
ρµρ
σ2
ρ

})

∝ exp

(
−1

2

{
ρ2 ·

( χ
τ2

+ σ−2
ρ

)
− 2ρ

(
η

τ2
+
µρ
σ2
ρ

)})
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and thus ρ|τ2, α ∼ N (µρ,post, σ
2
ρ,post) with

σ2
ρ,post =

( χ
τ2

+ σ−2
ρ

)−1

and

µρ,post =

(
η

τ2
+
µρ
σ2
ρ

)
σ2
ρ,post.

If a truncated normal prior is used, the truncation is transferred to the full conditional
distribution.

A.4. The Full Conditional Distribution of β

Analogously to (9) and (10) we have

p(β|α, σ2, x) ∝ L(β,α, σ2) · p(β) =
t−1∏

j=0

G(xt−j |αt−j + βxt−j−1, σ
2) · p(β). (14)

By defining d̆t−j := xt−j−αt−j and as G(xt−j |αt−j +βxt−j−1, σ
2) = G(βxt−j−1|d̆t−j , σ2)

the likelihood L(·) in the above equation can be reformulated as

L ∝ exp


− 1

2σ2



−2β



t−1∑

j=0

d̆t−jxt−j−1


+ β2



t−1∑

j=0

x2
t−j−1








 .

You can find a more detailed calculation in A.1. Defining the two terms in square
brackets as η and χ, respectively, we get

L ∝ exp

(
− 1

2σ2

{
−2βη + β2χ

})
.

Plugging this into (14) and using a normal prior with parameters µβ, σ
2
β for β, we have

p(β|α, σ2, x) ∝ exp

(
−1

2

{
β2χ

σ2
− 2

βη

σ2

})
exp

(
−1

2

{
β2

σ2
β

− 2
βµβ
σ2
β

})

∝ exp

(
−1

2

{
β2 ·

( χ
σ2

+ σ−2
β

)
− 2β

(
η

σ2
+
µβ
σ2
β

)})

and thus β|x, α, σ2 ∼ N (µβ,post, σ
2
β,post) with

σ2
β,post =

( χ
σ2

+ σ−2
β

)−1

and

µβ,post =

(
η

σ2
+
µβ
σ2
β

)
σ2
β,post.

If a truncated normal prior is used, the truncation is transferred to the full conditional
distribution.
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A.5. The Full Conditional Distribution of σ2

In this Section we derive the full conditional distribution of σ2. As before

p(σ2|α, β, x) ∝
t−1∏

j=0

G(xt−j |αt−j + βxt−j−1, σ
2) · p(σ2),

which is equal to

(σ2)−(t/2) exp


− 1

2σ2

t−1∑

j=0

ε2t−j


 · p(σ2) =: (σ2)−(t/2) exp

(
− 1

2σ2
κ

)
· p(σ2).

By using an inverse gamma distribution with shape and scale parameters a, b, or short
IG(a, b), for the prior of σ2 we get

(σ2)−(t/2) exp

(
− 1

2σ2
κ

)
· (σ2)−(a+1) exp(−b/σ2)

and thus also an inverse gamma distribution as posterior with parameters ã = t/2 + a
and b̃ = κ/2 + b, i.e.

σ2|α, β, x ∼ IG(ã, b̃).

A.6. Gibbs Sampler algorithm

Algorithm 1

1: Simulate from the full conditional distribution of α̃ by using the latest sample of the other parameters:

• α̃(m+1) ∼ p(α̃ | ρ(m), (τ2)(m), β(m), (σ2)(m), x)

2: Simulate from the full conditional distribution of ρ, the hyper parameter of α̃, by using the latest sample of
α and τ2:

• ρ(m+1) ∼ p(ρ | α(m+1), (τ2)(m), x)

3: Simulate from the full conditional distribution of σ2 by using the latest sample of α and β2:

• (σ2)(m+1) ∼ p((σ2)(m+1) | α(m+1), β(m), x)

4: Simulate from the full conditional distribution of β|σ2 by using the latest sample of α and σ2:

• β(m+1) ∼ p(β | α(m+1), (σ2)(m+1), x)

5: Set (τ2)(m+1) according to (6) such that a prior specified long run variance is met.
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A.7. Backtest Results

Maturity Mean Std. Dev. RMSE

The BTVC-AR(1)-Factor Model
1 year -0.0126 0.2561 0.0651
3 year -0.0302 0.2311 0.0538
5 year -0.0505 0.2433 0.0611
10 year -0.0466 0.2383 0.0584

The Gauss2++ Model
1 year -0.0808 0.2361 0.0618
3 year -0.1037 0.2252 0.0610
5 year -0.1203 0.2139 0.0598
10 year -0.1429 0.2130 0.0654

The dynamic Nelson-Siegel Model
1 year -0.0290 0.2615 0.0685
3 year -0.0462 0.2311 0.0550
5 year -0.0653 0.2410 0.0617
10 year -0.0589 0.2340 0.0577

Table 1: Results of the out-of-sample 1-month ahead forecasting.
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Maturity Mean Std. Dev. RMSE

The BTVC-AR(1)-Factor Model
1 year -0.2320 0.8105 0.7040
3 year -0.2462 0.7538 0.6230
5 year -0.2615 0.6954 0.5470
10 year -0.2388 0.5996 0.4129

The Gauss2++ Model
1 year -0.4094 0.8105 0.8184
3 year -0.5402 0.6768 0.7457
5 year -0.6098 0.6090 0.7393
10 year -0.6545 0.5824 0.7693

The dynamic Nelson-Siegel Model
1 year -0.2900 0.7857 0.6951
3 year -0.3022 0.7045 0.5825
5 year -0.3130 0.6380 0.5008
10 year -0.2812 0.5446 0.3727

Table 2: Results of the out-of-sample 6-month ahead forecasting.
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Maturity Mean Std. Dev. RMSE

The BTVC-AR(1)-Factor Model
1 year -0.5570 1.0310 1.3623
3 year -0.5628 0.8727 1.0705
5 year -0.5750 0.7757 0.9262
10 year -0.5379 0.6865 0.7557

The Gauss2++ Model
1 year -0.9047 1.0709 1.9546
3 year -1.1531 0.7939 1,9541
5 year -1.2745 0.7255 2.1458
10 year -1.3345 0.8060 2.4246

The dynamic Nelson-Siegel Model
1 year -0.6004 0.9961 1.3424
3 year -0.6024 0.8218 1.0316
5 year -0.6098 0.7096 0.8702
10 year -0.5657 0.6024 0.6793

Table 3: Results of the out-of-sample 12-month ahead forecasting.
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