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Abstract
Especially in the insurance industry interest rate models play a crucial role e.g. to
calculate the insurance company’s liabilities, performance scenarios or risk mea-
sures. A prominant candidate is the 2-Additive-Factor Gaussian Model (Gauss2++
model) – in a different representation also known as the 2-Factor Hull-White
model. In each application a distinction must be made whether the model is re-
garded under the risk neutral or the real world measure. In this paper, we propose
a framework to estimate the model such that it can be applied under both mea-
sures in a consistent manner. For this the change of measure needs to be specified.
We first show that any progressive and square-integrable function can be used
to specify the change of measure without loosing the analytic tractability of e.g.
zero-coupon bond prices. We then propose and analyse three candidates, which
are easy to calibrate: a constant, a step and a linear function. The constant func-
tion can lead to extreme interest rates in the long forecasting horizon and the result
depends highly on the chosen valuation date. Following the economic view that
current market fluctuations should not influence long term predictions much, the
latter two candidates distinguish between a short and a long term risk premium to
regularize the interest rates in the long horizon. We apply all variants to historic
data and show that the variants of the framework with the latter two functions
indeed produce realistic and much more stable long term interest rate forecasts
than the constant case. This stability over time would translate to performance
scenarios of e.g. interest rate sensitive fonds and risk measures.
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1 Introduction
Two prominent approaches to model the term structure of interest rates are the
classes of equilibrium and no-arbitrage models. Most equilibrium models concen-
trate on the dynamic of the short-rate – the instantaneous interest rate – and derive
interest rates with longer maturities from it. No-arbitrage models focus on exactly
fitting the term structure at a specific point in time to prevent arbitrage possibil-
ities. Prominent candidates of the class of equilibrium models include [Vasicek,
1977], [Cox et al., 1985] and [Duffie and Kan, 1996], and prominent no-arbitrage
models are introduced by [Hull and White, 1990] and [Heath et al., 1992]. Ap-
plications of these models often relate to pricing interest rate derivatives, which
is the reason why they are directly defined under the risk neutral measure most
of the time. A lot of advances in theoretic models and their estimation have been
conducted in the last 30 years, but only in connection to pricing [Diebold and Li,
2006]. Regarding these models little attention has been given to forecasting and
risk management purposes [Diebold and Li, 2006]. For these applications the cor-
responding model needs to be regarded under the real world measure. Dai and
Singleton [2000] as well as Jong [2000] investigate the in sample fit of affine term
structure models, but do not focus on forecasting. Duffee [2002] concludes that
the class of term structure models analyzed in [Dai and Singleton, 2000] fail in
forecasting. He points out that the restriction for the risk premium to be a fixed
multiple of the variance reduces the flexibility of the model. Hull et al. [2014]
stress that the market price of risk for a model with few factors should be time
dependent. This results not from an economic interpretation but from a modelling
issue because of an insufficient number of factors [Hull et al., 2014]. They esti-
mated the market price of risk from historic data and came to a similar result as
[Stanton, 1997], [Cox and Pedersen, 1999] and [Ahmad and Wilmott, 2006]. But
they argue that this value is only valid in the short horizon. Keeping this market
price of risk constant could lead to extreme risk premiums and interest rates in the
long horizon.
In this paper we tackle exactly this problem. Instead of assuming a constant, we
assume a time-varying function for the market price of risk. In contrast to Hull
et al. [2014], who estimate the market price of risk for each forecasting horizon
individually, we propose two parametric functions. The step function is the easiest
not-constant function, which allows to model a local long run risk premium valid
in the short and one valid in the long horizon. The linear function assumes that the
local long run risk premium in the short horizon converges linearly to a long-term
level. With these simplified time dependent functions it is possible to account for
the problem mentioned by Hull et al. [2014] and the functions can still be easily
estimated by historic data or calibrated to interest rate forecasts.
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The structure of the paper is as follows. In Section 2 we introduce the Gauss2++
model under the risk neutral and the real world measure in a very general frame-
work. In Section 3 we propose the constant, the step and the linear function for
the local long run risk premium and explain how they can be estimated. All three
variants of the Gauss2++ model are applied to data and backtested for the last 3
years in Section 4. In the final Section the results are summarized and concluded.

2 The Gauss2++ Model in the Risk Neutral and the
Real World

Throughout this Section a filtered probability space (Ω,F , (Ft)t∈[0,T ],M) is given,
where M is either the risk neutral measure Q with respect to the bank account or
the real world measure P. T represents an appropriate modelling horizon. The
bank account (B(t))t∈[0,T ] is given by

dB(t) = r(t)B(t)dt, B(0) = 1.

2.1 Short-Rate Models
A challenge of modelling the yield curve is the multivariate setting as each interest
rate with a specific maturity represents a dimension. Instead of modelling all
maturities simultaniously, short-rate models just model the short-rate and derive
interest rates with longer maturities via pricing zero-coupon bonds. Given the
price of a zero-coupon bond, the corresponding interest rate can be calculated by

r(t, T ) =
−ln(P (t, T ))

T − t , (1)

where r(t, T ) and P (t, T ) represent the interest rate and the price of a zero-coupon
bond at time t and a maturity of T , respectively.

For pricing zero-coupon bonds the financial mathematical method of risk neu-
tral valuation can be applied. The risk neutral interest rates generated in this way
can be used in a Monte Carlo simulation to price interest rate derivatives or bonds.
This is the main application of short-rate models and the reason why they are of-
ten defined directly under the risk neutral measure.
The method of risk neutral valuation is a general concept in financial mathematics
and uses the property, that price processes of any security in the market discounted
by the bank account are martingales under Q. Therefore, the risk neutral price of
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a zero-coupon bond at time point t is obtained by

P (t, T )

B(t)
= EQ

[
P (T, T )

B(T )

∣∣∣∣Ft
]
.

As the value of the bank account at time point t is given by B(t) = e
∫ t
0 r(s)ds and

the payoff of a zero-coupon bond is one amount of currency at time T this leads
to

P (t, T ) = EQ
[
e−

∫ T
t r(s)ds

∣∣∣∣Ft
]
,

where r(s) is the short-rate at time point s. If the distribution of r(s) is known
and such, that the conditional distribution of e−

∫ T
t r(s)ds can be determined, zero-

coupon bond prices of different maturities at different time points can be ana-
lytically calculated. From bond prices interest rates are available using (1), so
that indeed the whole interest rate curve is characterized in terms of distributional
properties of r.

If one is not interested in pricing interest rate derivatives or bonds but in risk
measures or performance scenarios, interest rates under the real world measure
are needed. The challenge in the real world is that every financial product has
a different drift in its process depending on its risk the (in general risk averse)
investor wants to be compensated for. To get a martingale as in the risk neutral
world such that we can use the conditional expectation to price a security in the
market, we have to discount the price process with a cash flow, which is prod-
uct specific and different from the risk neutral bank account. This cash flow is
in general not known, which is the reason why one switches to the risk neutral
world if interested in pricing and valuation. But by knowing the dynamics of the
processes under the risk neutral measure and defining the change of measure, we
implicitly define this cash flow for every security in the market and therefore we
can calculate the price of a zero-coupon bond analogously with the conditional
expectation

P (t, T )

XP (t,T )(t)
= EP

[
P (T, T )

XP (t,T )(T )

∣∣∣∣Ft
]
,

where XP (t,T )(t) is the value of the cash flow at time point t, with which we have
to discount P (t, T ) such that P (t,T )

XP (t,T )(t)
is a martingale under P. Note that we take

the expectation under the real world measure P. As P (T, T ) is one amount of
currency the conditional expectation reduces to

P (t, T ) = EP
[
XP (t,T )(t)

XP (t,T )(T )

∣∣∣∣Ft
]
. (2)
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We will show in Section 2.3 that if we define the change of measure in the
Gauss2++ model in a specific way, XP (t,T )(t) can be easily extracted and a closed
form solutions for the price of a zero-coupon bond or interest rates can still be
obtained.

2.2 The Gauss2++ Model under the Risk Neutral Measure
Short-rate models differ in the underlying process for the short-rate. The Gauss2++
model assumes that the short-rate is given by a sum of two correlated normally
distributed processes, (x(t))t∈[0,T ] and (y(t))t∈[0,T ], and a deterministic function
ϕ, which is well defined on the time interval [0, T ]:

r(t) = x(t) + y(t) + ϕ(t), r(0) = r0,

where r0 is the short-rate at time point 0. The processes (x(t))t∈[0,T ] and (y(t))t∈[0,T ]

satisfy under the risk neutral measure Q the following stochastic differential equa-
tions

dx(t) = −ax(t)dt+ σdW 1(t), x(0) = 0,

dy(t) = −by(t)dt+ ηdW 2(t), y(0) = 0,

ρdt = dW 1(t)dW 2(t),

where a, b, σ, η are non-negative constants and −1 ≤ ρ ≤ 1 is the instantanious
correlation between the two Brownian motions W 1 and W 2.
The short-rate is therefore normally distributed and it can be shown that

∫ T
t
r(s)ds

is also normally distributed with mean

M(t, T ) =

∫ T

t

ϕ(s)ds+B(a, t, T )x(t) +B(b, t, T )y(t)

and variance

V (t, T ) =
σ2

a2

[
(T − t) + 2

a
e−a(T−t) − 1

2a
e−2a(T−t) − 3

2a

]

+
η2

b2

[
(T − t) + 2

b
e−b(T−t) − 1

2b
e−2b(T−t) − 3

2b

]

+ 2ρ
ση

ab

[
(T − t) + e−a(T−t) − 1

a
+
e−b(T−t) − 1

b
− e−(a+b)(T−t) − 1

a+ b

]
,

where

B(z, t, T ) =
1− e−z(T−t)

z
.

A derivation of the mean and the variance can be found in [Brigo and Mercurio,
2007].
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The expression e−
∫ T
t r(s)ds is therefore log-normally distributed and the zero-coupon

bond price P (t, T ), which is the conditional expectation of this expression, is
given by

P (t, T ) = EQ
[
e−

∫ T
t r(s)ds

∣∣∣∣Ft
]

= e−M(t,T )+
V (t,T )

2

= e−
∫ T
t ϕ(s)ds−B(a,t,T )x(t)−B(b,t,T )y(t)+ 1

2
V (t,T ). (3)

With this closed form solution for the conditional expectation zero-coupon bond
prices under the risk neutral measure are readily defined and interest rates can be
directly derived.

The financial market we actually model consists of a bank account and a set of
zero-coupon bonds, P (t, T ), which differ in the maturity T . The dynamic of a
zero-coupon bond price can be derived from the bond price formula in (3) by
applying Ito’s formula and is given by

dP (t, T ) = r(t)P (t, T )dt+σB(a, t, T )P (t, T )dW 1(t)+ηB(b, t, T )P (t, T )dW 2(t).

A detailed derivation can be found in the appendix A.1. Note that all assets have
the same drift as it is the case in the risk neutral world.

2.3 The Gauss2++ Model under the Real World Measure
To calculate performance scenarios and risk indicators the Gauss2++ model must
be regarded under the real world measure P. We first describe the change from the
risk neutral measure to the real world measure before the dynamics of the model
under P are stated. We further show, that different specifications of the change of
measure do not change the formula for the price of a zero-coupon bond.

2.3.1 The Change of Measure

By specifying the Gauss2++ model under the risk neutral measure, we implicitly
assume an arbitrage free market. Therefore, we can make the transition to a real
world measure P by defining the change of measure according to Girsanov, who
states that a progressive and square-integrable process
(Φ(t))t∈[0,T ] =

(
Φ1(t),Φ2(t), ...,Φd(t)

)
t∈[0,T ]

determines a new probability mea-

sure P such that if (Ŵ (t))t∈[0,T ] is a standard d-dimensional (Ft)t∈[0,T ]-Brownian
motion under Q, then

W̆ (t) := Ŵ (t) +

∫ t

0

Φ(s)ds
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defines a standard d-dimensional (Ft)t∈[0,T ]-Brownian motion under P [Girsanov,
1960]. We can choose any Φ, which fullfills the conditions in the Girsanov theo-
rem, to specify the change of measure. We will represent Φ as follows to simplify
calculations

Φ(t) =

(
Φ1(t)
Φ2(t)

)
=

(
−adx(t)

σ

− bdy(t)

η
√

1−ρ2
+ ρadx(t)

σ
√

1−ρ2

)
. (4)

Note that we have not restricted the set of functions by this representation. The
conditions for the Girsanov theorem translate directly to the functions dx(t) and
dy(t).

2.3.2 The dynamics under the real world measure P

With the representation of Φ as in (4) the dynamics of the processes x and y in
the Gauss2++ model change according to Girsanov to

dx(t) = a(dx(t)− x(t))dt+ σdW̃ 1(t), x(0) = 0, (5)

dy(t) = b(dy(t)− y(t))dt+ ηdW̃ 2(t), y(0) = 0, (6)

where W̃ 1 and W̃ 2 are two correlated Brownian Motions under P. The derivation
can be found in the appendix A.2. We observe that x and y are still Ornstein-
Uhlenbeck processes with the solutions

x(t) =

∫ t

0

e−a(t−u)adx(u)du+ σ

∫ t

0

e−a(t−u)dW̃ (u), (7)

y(t) =

∫ t

0

e−b(t−u)bdy(u)du+ η

∫ t

0

e−b(t−u)dW̃ (u). (8)

The mean reversion level of each process at time point t amounts to dx(t) and
dy(t), respectively. Recall that the sum of x(t) and y(t) and a deterministic func-
tion ϕ(t) under the risk neutral measure adds up to the instantaneous return rate
r(t) of a risk free investment. Changing the measure changes the mean reversion
level at time point t from 0 to dx(t) for the process x and to dy(t) for the process
y. Therefore, dx(t) + dy(t) can be interpreted as the local long run risk premium
of the short-rate – the amount, which is added in the real world to the risk neutral
short-rate. If this amount is negative, future bond prices increase in expectation
compared to the risk neutral world and a risk averse investor, therefore, gets com-
pensated for the risk of investing in a risky bond. This means in contrast to equity
prices, in a market where investors are risk averse, future interest rates tend to be
lower in the real world than in the risk neutral world [Hull et al., 2014]. There-
fore, dx(t) and dy(t) can be interpreted as the local long run risk premium the
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corresponding risk factor is mean reverting to at time point t. Dividing dx(t) and
dy(t) by σ and η respectively, we are dividing by the amount of risk subject to
the first and the second risk factor, which are modelled by the processes x and y.
Therefore we can interpret dx(t)

σ
and dy(t)

η
as the local long run market price of risk

for the corresponding risk factor. The parameters a and b determine how fast this
long run risk premium and long run market price of risk is reached.

The dynamics of a zero-coupon bond with maturity T under P has the follow-
ing form

dP (t, T ) =P (t, T ) [r(t)−B(a, t, T )adx(t)−B(b, t, T )bdy(t)] dt

− P (t, T )B(a, t, T )σdW̃ 1(t)− P (t, T )B(b, t, T )ηdW̃ 2(t) (9)

The derivation can be found in the appendix A.3.

2.3.3 The Bond Price Formula under The Real World Measure

To calculate the price of a zero-coupon bond under the real world measure with
the conditional expectation in (2), the cash flow XP (t,T ), with which we have to
discount the zero-coupon bond such that the discounted price process is a martin-
gale under P, needs to be determined. The dynamic of XP (t,T ) coincides with the
deterministic part of the zero-coupon bond price dynamic in (9) and is therefore
specified by the change of measure:

dXP (t,T )(t) = XP (t,T )(t) [r(t)−B(a, t, T )adx(t)−B(b, t, T )bdy(t)] dt, XP (t,T )(0) = 1.

A short proof can be found in the appendix A.4. The solution of this dynamic is
given by

XP (t,T )(t) = e
∫ t
0 (r(u)−B(a,u,T )adx(u)−B(b,u,T )bdy(u))du.

As P (t,T )
XP (t,T )(t)

is a martingale we can use the conditional expectation in (2) to cal-
culate the price of a zero-coupon bond at time point t:

P (t, T ) = EP
[
XP (t,T )(t)

XP (t,T )(T )

∣∣∣∣Ft
]
.

The ratio in the expectation amounts to

XP (t,T )(t)

XP (t,T )(T )
= e−

∫ T
t (r(u)−B(a,u,T )adx(u)−B(b,u,T )bdy(u))du.

To determine the distribution of this ratio we first derive the distribution of the
integral in the exponent, i.e

I(t, T ) :=

∫ T

t

(r(u)−B(a, u, T )adx(u)−B(b, u, T )bdy(u)) du.
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It can be shown that I(t, T ) is normally distributed with mean

M(t, T ) =

∫ T

t

ϕ(u)du+
1− e−a(T−t)

a
x(t) +

1− e−b(T−t)
b

y(t)

and variance

V (t, T ) =
σ2

a2

[
(T − t) + 2

a
e−a(T−t) − 1

2a
e−2a(T−t) − 3

2a

]

+
η2

b2

[
(T − t) + 2

b
e−b(T−t) − 1

2b
e−2b(T−t) − 3

2b

]

+ 2ρ
ση

ab

[
(T − t) + e−a(T−t) − 1

a
+
e−b(T−t) − 1

b
− e−(a+b)(T−t) − 1

a+ b

]
.

The variance is the same as in the risk neutral world as the change of mea-
sure does not influence the variance of the processes. Note that also the mean
has the same form as in the risk neutral case as the terms B(a, u, T )adx(u) and
B(b, u, T )bdy(u) in I(t, T ) cancel out in the calculations. The derivations can be
found in the appendix A.5.

The expression e−I(t,T ) is therefore log-normally distributed and the zero-coupon
bond price under P is given by

P (t, T ) = EP
[
e−

∫ T
t r(u)−B(a,u,T )adx(u)−B(b,u,T )bdy(u)du | Ft

]

= e−M(t,T )+ 1
2
V (t,T )

= e
∫ T
t ϕ(u)du+ 1−e−a(T−t)

a
x(t)+ 1−e−b(T−t)

b
y(t)+ 1

2
V (t,T ).

The bond price formula stays, therefore, exactly the same as in the risk neutral
case. The only difference is, that x(t) and y(t) are now the values at time point t
of the corresponding processes under the real world measure P.

3 Local Long Run Risk Premium Functions – Spec-
ification and Calibration

In the following three different types of functions for dx(t) and dy(t) are intro-
duced: the constant, the step and the linear function. Following the interpretation
in Section 2.3.2 these functions represent the long run risk premium for each risk
factor at a specific time point t in the Gauss2++ model. The functional equations
of the three types are
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Constant: dx(t) = dx
dy(t) = dy

Step: dx(t) = 1t≤τdx + 1t>τ lx
dy(t) = 1t≤τdy + 1t>τ ly

Linear: dx(t) = 1t≤τ (1−mxt)dx + 1t>τ lx
dy(t) = 1t≤τ (1−myt)dy + 1t>τ ly

where dx, lx, mx and dy, ly, my are real valued constants and 1A represents the
indicator function.
The constant function assumes that the local long run risk premium is constant
for the whole modeling horizon. The latter two functions distinguish between a
local long run risk premium valid in the short and in the long horizon, seperated
at time point τ . Hull et al. argue that a time varying risk premium is necessary
to account for the risk premiums of unobserved risk factors and to prevent unreal-
istic interest rate forecasts in the long horizon [Hull et al., 2014]. They therefore
estimate an individual risk premium for each forecasting horizon. We use a more
parsimonious function with regard to the number of parameters. The step function
we propose is the simplest time varying function that expects that the local long
run risk premium differs in the short and the long horizon but is still constant in
each period. The linear function implements the property that the local long run
risk premium in the short horizon approaches the long term level linearly. The
simplicity of these functions allows a straight forward calibration to interest rate
forecasts.

Because of the distributional properties of the Gauss2++ model the expected val-
ues for interest rates under the real world measure P for any future time point can
be calculated:

EP[r(t, T )] = EQ[r(t, T )] +
B(a, t, T )

T − t RPx(t) +
B(b, t, T )

T − t RPy(t), (10)

where RPx(t) and RPy(t) represent the actual risk premium of the short-rate at
time point t for each risk factor and are given by the first integral in (7) and (8)

RPx(t) :=

∫ t

0

e−a(t−u)adx(u)du,

RPy(t) :=

∫ t

0

e−b(t−u)bdy(u)du.

For the constant, the step and the linear function these integrals can be easily
calculated. To get the risk premium for longer maturities the functions RPx(t)
and RPy(t) are weighted by a loading function, which accounts for the different
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riskiness of the corresponding zero-coupon bonds

B(a, t, T )

T − t and
B(b, t, T )

T − t .

To calibrate the local long run risk premium functions, dx(t) and dy(t), the pa-
rameters of the functions are chosen in such a way that the model meets specific
interest rate forecasts in expectation. For the constant type two interest rate fore-
casts are needed. For the other two types four interest rate forecasts are necessary
– two short term and two long term forecasts. The time parameter τ , which de-
termines the separation between the short and the long term local long run risk
premium must lie between the forecasting horizons of the two short and the two
long term forecasts.

In Figure (1) the three types of local long run risk premium functions have been
exemplarily calibrated. τ has been set to 24 months, which is the forecasting
horizon of the short term interest rate forecasts.

(a) (b) (c)

Figure 1: Local long run risk premium functions

In the following Subsections the calibration procedures for all three types of local
long run risk premium functions, which are applied in this paper, are described.

3.1 The Constant Function
The constant functions represented in Figure (1) (a) implement a constant local
long run risk premium for the whole modeling horizon, which can amount to up
to 40 years for applications in the insurance industry. The absolute risk premiums,
RPx(t) and RPy(t), are given by:

RPx(t) = (1− e−at)dx,
RPy(t) = (1− e−bt)dy.
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Note that if t→∞,RPx(t) andRPy(t) indeed converge to dx and dy, the long run
risk premiums, respectively. To calibrate the parameters of the constant functions
two interest rate forecasts, r̂(t1, T1) and r̂(t2, T2) are used. Plugging the absolute
risk premium functions,RPx(t) andRPy(t), into (10) and setting the expectations
equal to the interest rate forecasts results in the following two equations

(I) r̂(t1, T1)
!
= EQ[r(t1, T1)] +

B(a,t1,T1)
(T1−t1) (1− e−at1)dx + B(b,t1,T1)

(T1−t1) (1− e−bt1)dy ,

(II) r̂(t2, T2)
!
= EQ[r(t2, T2)] +

B(a,t2,T2)
(T2−t2) (1− e−at2)dx + B(b,t2,T2)

(T2−t2) (1− e−bt2)dy .

As the expecatations are linear functions in dx and dy, the two parameters can be
easily determined.

The constant function for the local long run risk premium in the Gauss2++ model
and this calibration procedure is the standard in the insurance industry. As the
values for dx and dy determine the risk premium for the whole modeling horizon,
their calibration is crucial for the model’s interest rate distribution. Especially if
the interest rate forecasts used for the calibration have a short forecasting horizon,
the resulting distribution in the long horizon is very sensitive to these forecasts.
For example if the interest rate forecasts and the forward rates – calculated from
the current yield curve – are very different, to reach the forecasts a huge risk
premium is necessary, which might be valid in the short horizon, but produces
extreme interest rates in the long horizon. The next two functions account for this
problem by representing a time varying local long run risk premium.

3.2 The Step Function
The step functions represented in Figure (1) (b) take the same value as the corre-
sponding constant function up to time τ as the same interest rate forecasts have
been used for the short horizon, but then it jumps to a different level to account for
the risk premium in the long horizon. Similar to the constant function the absolute
risk premium functions can easily be calculated and amount to

RPx(t) =
(
e−a(t−min(t,τ)) − e−at

)
dx +

(
1− e−a(max(t,τ)−τ)

)
lx,

RPy(t) =
(
e−b(t−min(t,τ)) − e−bt

)
dy +

(
1− e−b(max(t,τ)−τ)

)
ly.

Note that if t → ∞, RPx(t) and RPy(t) now converge to lx and ly, respectively.
To calibrate the four parameters of the step function two short term and two long
term interest rate forecasts are used resulting in the following equations:

(I) r̂(t1, T1)
!
= EQ[r(t1, T1)] +

B(a,t1,T1)
(T1−t1) RPx(t1) +

B(b,t1,T1)
(T1−t1) RPy(t1),

(II) r̂(t2, T2)
!
= EQ[r(t2, T2)] +

B(a,t2,T2)
(T2−t2) RPx(t2) +

B(b,t2,T2)
(T2−t2) RPy(t2),

(III) r̂(t3, T3)
!
= EQ[r(t3, T3)] +

B(a,t3,T3)
(T3−t3) RPx(t3) +

B(b,t3,T3)
(T3−t3) RPy(t3),

(IV) r̂(t4, T4)
!
= EQ[r(t4, T4)] +

B(a,t4,T4)
(T4−t4) RPx(t4) +

B(b,t4,T4)
(T4−t4) RPy(t4),
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where t1 ≤ t2 ≤ t3 ≤ t4. τ must lie between t2 and t3, i.e. t2 ≤ τ < t3.
Instead of interest rate forecasts direct forecasts of the absolute risk premium of
the short-rate can be used. This approach is applied by Hull et al. [2014], who
estimate risk premiums for each forecasting horizon from historic data, but they
also scale their result to a long term short-rate forecast [Hull et al., 2014].

3.3 The Linear Function
The linear function represented in figure (1) (c) avoids the sudden jump as it is the
case in the step function and converges in the short term linearly to a long term
level. The absolute risk premiums at time point t can be calculated as before and
amount to

RPx(t) =
((
e−a(t−min(t,τ)) − e−at

)(
1 +

mx

a

)
+
(
e−a(t−min(t,τ))

)
mxmin(t, τ)

)
dx

+
(
1− e−a(max(t,τ)−τ)

)
lx,

RPy(t) =
((
e−b(t−min(t,τ)) − e−bt

)(
1 +

my

b

)
+
(
e−b(t−min(t,τ))

)
mymin(t, τ)

)
dy

+
(
1− e−b(max(t,τ)−τ)

)
ly.

Note again that if t → ∞, RPx(t) and RPy(t) converge to lx and ly, the long
term risk premiums, respectively. To calibrate dx, lx, dy and ly four interest rate
forecasts as for the step function are used. By imposing that the absolute risk pre-
mium functions, RPx(t) and RPy(t), are differentiable at the forecasting horizon
τ to prevent a kink in the absolute risk premium function, two further conditions
are incorporated to specify mx and my:

(V) RP ′x(t)
∣∣
t=τ− = RP ′x(t)

∣∣
t=τ+

,
(VI) RP ′y(t)

∣∣
t=τ− = RP ′y(t)

∣∣
t=τ+

.

Solving the equations for mx and my leads to the following closed form solutions
reducing the number of free parameters to four:

mx =
dx − lx
dxτ

,

my =
dy − ly
dyτ

.

Note that with this condition the same number of interest rate forecasts as for the
step function are needed to calibrate dx(t) and dy(t).

4 Results
In this Section the calibration results of three variants of our framework for the
Gauss2++ model are presented. The variants differ in the assumption about the

13



local long run risk premium functions, which determine the change from the risk
neutral to the real world measure. Variant 1 assumes a constant, variant 2 a step
and variant 3 a linear local long run risk premium function for the risk factors.
In the first Subsection the three variants of the Gauss2++ model are compared if
calibrated at the same valuation date. In Subsection 4.2 we show with a backtest
over the last three years that variant 2 and 3 produce much more stable interest
rate scenarios for the long forecasting horizon over this time period. This stability
would transfer to performance scenarios and risk measures of e.g. an interest rate
sensitive fonds.

4.1 Calibration at One Valuation Date
The calibration process of the Gauss2++ model can be split into two steps. In the
first step the model is calibrated under the risk neutral measure. This step does not
depend on the choice of the local long run risk premium function and is therefore
the same for all modeling cases. In the second step the change of measure is cali-
brated. The choice of the local long run risk premium function plays an important
role and leads to different interest rate scenarios, performance measures and risk
indicators.

To calibrate the model at a specific valuation date under the risk neutral mea-
sure the term structure of interest rate swaps and swaption volatilities at this date
are used. The Gauss2++ model presumes a specific dynamic for the short-rate
and with it for interest rates with longer maturities. The parameters of the model
are chosen in such a way, that the current term structure is met in expectation and
that the model prices of the swaptions coincide with the market prices. In this
way market consistency of the model is ensured. As ϕ is a deterministic function
of time, a perfect fit in expectation to the current term structure of interest rates
can be achieved, i.e. the function ϕ is implicitly given by the current interest rate
curve. Later in the modeling process we use the term structure of german govern-
ment bond yields with the assumption that the dynamic of this term structure is
the same as for the term structure of interest rate swaps. For the calibration of the
five parameters a, b, σ, η and ρ the downhill simplex algorithm is used to find the
parameter set, which replicates the market swaption prices best. Table 1 shows
the results of a calibration at the 31.12.2019. We use swaptions with a maturity
and tenor combination of {5, 7, 10, 12, 15, 20} x {5, 7, 10, 12, 15, 20}, i.e. in total
36 swaption prices.

14



a b σ η ρ

0.4415 0.0375 0.0164 0.0106 −1.0000

Table 1: Parameters of the Gauss2++ model calibrated at 31.12.2019

These parameters together with the current interest rate curve determine the dy-
namics of the Gauss2++ model under the risk neutral measure.

In the second step the local long run risk premium functions, which determine
the change of measure, are calibrated to interest rate forecasts as described in
Section 3.1 - 3.3. For the short term interest rate forecasts we use forecasts pub-
lished by the OECD for a 3-month and a 10-year interest rate. The latest forecasts
regarding the 31.12.2019 for the longest horizon, which is the fourth quarter of
2021, amount to −0.4% and 0.4%, respectively1. For the long term interest rate
forecasts, which are needed to calibrate the step and the linear function, we take
the average of monthly 3-month and 10-year interest rates over the last 15 years
also published by the OECD. This is a valid approach if interest rates follow a
stationary process, because in this case historic data can be considered as a ran-
dom sample from the corresponding interest rate distribution. Hull et al. point
out that this approach is questionable if monetary and fiscal policies are expected
to be materially different from those in the past [Hull et al., 2014]. Nevertheless
any other model based on historic data would be questionable and the user of the
model can alternatively provide personal estimates or an expert judgment. The
historic average amounts to 1.14% for the 3-month and 1.85% for the 10-year in-
terest rate and as we assume these forecasts to be a long run average we set the
forecasting horizon to 40 years – the modeling horizon. We further set τ to 24
months, which is the forecasting horizon of the short term OECD forecasts.

Table 2 shows the calibration results for the three local long run risk premium
function types.

1https://stats.oecd.org
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dx dy lx ly

Constant Function −0.0074 0.0738

Step Function −0.0074 0.0738 −0.0070 −0.0094

Linear Function −0.0079 0.1590 −0.0070 −0.0094

Table 2: Parameters of the local long run risk premium functions

The values of dx and dy coincide for the constant and the step function as the same
interest rate forecasts have been used in the calibration process. But in contrast to
the step function, which takes the values of lx and ly after 24 months, the constant
function stays constant for the whole modeling horizon. It also appears that the
step and the linear function take the same values for lx and ly. But there is a slight
difference as their functional forms differ in the first two years, which influences
the absolute risk premium in future time points. This influence decreases in time,
such that the difference is negligible as we calibrated lx and ly to forecasts with
an forecasting horizon of 40 years.

Figure 2-4 visualize for the three calibrated variants of the Gauss2++ model the
development of the expectation of the short-rate, the 10-year and the 20-year in-
terest rate for forecasting horizons of up to 40 years. The solid line represents the
expectation under the risk neutral measure, the dashed line shows the expected
values under the real world measure.

(a) (b) (c)

Figure 2: Constant Function
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(a) (b) (c)

Figure 3: Step Function

(a) (b) (c)

Figure 4: Linear Function

For the variant of the Gauss2++ model, which uses the constant function as the
local long run risk premium function, the expected real world interest rates lie
above the risk neutral expectation. This means, that a risk seeking behavior of the
investors is assumed for the whole modeling period, because an investor accepts
a lower expected return for a corresponding bond if the interest rates are expected
to be higher in the real world compared to the risk neutral world. Ahmad and
Wilmott [2006] show that there have been time periods where investors seem to
have historically behaved in this way. But in general investors are assumed to be
risk averse and therefore interest rates should be lower in the real world than in
the risk neutral world, which is an opposite behavior to equity prices [Hull et al.,
2014]. For the other two variants of the Gauss2++ model the expected real world
interest rates lie also above the risk neutral interest rates in the short horizon but
below in the long horizon. This assumption of risk seeking behavior in the short
horizon stems from the quite high forecasts of the OECD for the short horizon, but
it might be valid in the current market situation. In contrast to the constant case,
which keeps this risk seeking behavior assumption for the whole modeling hori-
zon, in the long run the other two variants of the Gauss2++ model assume in this
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Figure 5: Absolute risk premium function for the variants of the Gauss2++ model

calibration a risk averse behavior. Furthermore, the absolute difference in the risk
neutral and real world expectations decreases for interest rates with longer matu-
rities. This results from the less variation of interest rates with longer maturities,
which is an implicit model characteristic of the Gauss2++ model and is supported
by historic data as well. A risk premium is therefore higher (less negative) for a
risk averse and lower (less positive) for a risk seeking investor in an arbitrage free
market.

Figure (5) shows the absolute risk premium functions of the short-rate for all three
modeling types. It can be observed that for the constant and the step function the
absolute risk premium is the same up to year 2. After that year the Gauss2++
variant with the step function has a kink in the absolute risk premium as the local
long run risk premium changes to a different level, while the modeling case with
the constant function continuous to apporach the long term risk premium deter-
mined by the short term interest rate forecasts. The modeling case with the linear
function results in a different risk premium for the first 2 years, but approaches
– without a kink – the same long term risk premium as the step function. All
three functions intersect after 2 years as this is the forecasting horizon of the short
term interest rate forecasts, which were used for the calibration. The absolute risk
premium at this time point must be the same for all modeling cases such that the
expected interested rates of the model coincide with the forecasts.
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4.2 Backtest
In this Subsection the different variants of the Gauss2++ model calibrated on a
quarterly basis over the last 3 years are compared.

As in Section 4.1 interest rate swaps and swaption volatilities have been used for
the risk neutral calibration of the Gauss2++ model. To calibrate the parameters of
the local long run risk premium functions in the second calibration step short term
interest rate forecasts published by the OECD and a long term average have been
used. The forecasts are shown in table (3).

Date Short Term Interest Rate Forecasts Historic Average
Forecasting Horizon 3-m IR 10-y IR 3-m IR 10-y IR

(in months) (in %) (in %) (in %) (in %)
30.09.2019 15 -0.3 1.0 1.20 1.85
30.06.2019 18 -0.3 1.0 1.24 2.01
31.03.2019 21 0.2 1.6 1.28 2.09
31.12.2018 24 0.2 1.6 1.32 2.16
30.09.2018 15 -0.2 1.3 1.36 2.16
30.06.2018 18 -0.2 1.3 1.40 2.30
31.03.2018 21 -0.3 1.4 1.45 2.36
31.12.2017 24 -0.3 1.4 1.50 2.42
30.09.2017 15 -0.3 1.6 1.55 2.48
30.06.2017 18 -0.3 1.6 1.59 2.54
31.03.2017 21 -0.3 1.6 1.62 2.62
31.12.2016 24 -0.3 1.6 1.65 2.66

Table 3: Interest rate forecasts of the OECD and historic average of the 3-month
and the 10-year interest rate 2

The calibration results of the parameters of the Gauss2++ model under the risk
neutral measure and of the local long run risk premium function for each variant
of the Gauss2++ model can be found in table (4)-(7) in the appendix A.6.

For each calibration the absolut risk premium function of the short-rate and the
development of the expected 10-year interest rate have been caluclated and visu-
alized in figure (6) and (7).

2https://stats.oecd.org
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(a) (b) (c)

Figure 6: Absolute risk premium functions

(a) (b) (c)

Figure 7: Development of the expectation of the 10-year interest rate over the
modeling horizon for all three variants of the Gauss2++ model

The absolute risk premium function of the short-rate for the Gauss2++ model,
which uses the constant function for the local long run risk premium, depends
highly on the risk neutral calibration results and the forecasts of the OECD. An
unfavorable combination of market data and interest rate forecasts can lead to a
high value for the local long run risk premium. This value might be reasonable
to meet the short term forecasts used for the calibration, but as it stays constant
over time it is the value the absolute risk premium is convergeing to. Therefore,
this problem can strike through if the modeling horizon is much longer than the
forecasting horizon of the interest rates used for the calibration. In this case a
time-varying local long run risk premium function, which can be calibrated to a
short and a long term forecast, is more convenient to regularize the risk premium.
As it can be seen in figure (6) the variants of the Gauss2++ model, which use the
step and the linear function for the local long run risk premium, produce more
stable risk premiums in the long horizon. In each calibration the absolute risk pre-
mium is positive in the first years, which presumes a risk seeking behavior of the
investors, but in the long horizon the absolute risk premium lies between −0.5%
and−2.5% representing a risk averse market. Also the interest rate distribution in
the long horizon is more stable. Figure (7) (b) and (c) show that the expectation of
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the 10-year interest rate in the long horizon change only little in each calibration
according to the historic average, which was used for the long term interest rate
forecast.

5 Conclusion
As the Gauss2++ model is often used for pricing purposes, the focus in the liter-
ature lies on the evolution of interest rates under the risk neutral measure Q. But
regarding risk management and forecasting applications the model under the real
world measure is needed. In this paper we introduced a framework to apply the
model under both measures in a consistent manner. This framework first conducts
a calibration under the risk neutral measure and then determines the change of
measure such that it is possible to switch between the risk neutral and the real
world. We showed that according to Girsanov this change of measure can be
specified by any progressive and square-integrable function without loosing the
analytic tractability for e.g. bond prices. Hull et al. [2014] argue that because
of unobserved risk factors, which are not included in the model, a time-varying
function should be used, because otherwise unrealistic interest rates in the long
forecasting horizon could be reached [Hull et al., 2014]. We therefore compared
a variant of our framework, which uses constant functions to model the change
of measure, with two variants, which use either step or a linear functions. These
functions are the simplest extensions of the constant function to a time varying
function without increasing the computational effort much. By accounting for
different risk premiums in the short and in the long horizon the time varying func-
tions result in much more stable interest rate forecasts in the long run if calibrated
at different valuation dates. From a macroeconomical point of view it makes sense
that current market fluctuations should not influence interest rate forecasts in the
long horizon, e.g. in 40 years, much. This would also imply that risk measures
calculated with the Gauss2++ model, which uses one of the time-varying func-
tions for the change of measure, would be more consistent if estimated at different
valuation time points.
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A Appendix

A.1 Bond Price Dynamic under the Risk Neutral Measure
The price of a zero-coupon bond P (t, T ) at time point t and maturity T can be
calculated for the Gauss2++ model under the risk neutral measure Q as specified
in Section 2.2 by

P (t, T ) = eA(t,T )−Bτ (a)x(t)−Bτ (b)y(t), (11)

where

A(t, T ) = ln(PM(0, T ))− ln(PM(0, t)) +
1

2
(V (t, T )− V (0, T ) + V (0, t))

Bτ (z) = B(z, t, T ) =
1− e−z(T−t)

z
, with τ = T − t and z ∈ {a, b}.

PM(0, T ∗) represents hereby the current market price of a zero-coupond bond
with maturity T ∗ and

V (t, T ) =
σ2

a2

[
T − t+

2

a
e−a(T−t) − 1

2a
e−2a(T−t) − 3

2a

]

+
η2

b2

[
T − t+

2

b
e−b(T−t) − 1

2b
e−2b(T−t) − 3

2b

]

+ 2ρ
ση

ab

[
T − t+

e−a(T−t) − 1

a
− e−b(T−t) − 1

b
− e−(a+b)(T−t) − 1

a+ b

]
.

To calculate the Bond Price dynamic, we apply Itô’s formula to (11), i.e.

dP (t, T ) = P (t, T ) [A(t, T )−Bτ (a)x(t)−Bτ (b)y(t)]′ dt+ P (t, T )(−Bτ (a)dx(t)

+ P (t, T )(−Bτ (b))dy(t)

+
1

2
P (t, T )Bτ (a)2σ2dt

+
1

2
P (t, T )Bτ (b)2η2dt

+ P (t, T )Bτ (a)Bτ (b)σηdt

= P (t, T )

[
A′(t, T )−B′τ (a)x(t) − B′τ (b)y(t) +Bτ (a)ax(t) +Bτ (b)by(t) +

1

2
Bτ (a)2σ2

+
1

2
Bτ (b)2η2 +Bτ (a)Bτ (b)σηρ

]
dt

−Bτ (a)P (t, T )σdW 1(t)

−Bτ (b)P (t, T )σdW 2(t) (12)
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where A′(t, T ) and B′τ (·) represents the corresponding derivative with respect to
t, i.e.

A′(t, T ) = fM (0, t) +
1

2
[ V ′(t, T ) + V ′(0, t)]

= fM (0, t)− σ2

2a
+
σ2

a2
e−a(T−t) − σ2

2a2
e−2a(T−t) − η2

2b2
+
η2

b2
e−b(T−t) − η2

2b2
e−2b(T−t)

− σηρ

ab
+
σηρ

ab
e−a(T−t) +

σηρ

ab
e−b(T−t) − σηρ

ab
e−(a+b)(T−t)

+
σ2

2a
− σ2

a2
e−aT +

σ2

2a2
e−2aT +

η2

2b2
− η2

b2
e−bT +

η2

2b2
e−2bT

+
σηρ

ab
− σηρ

ab
e−aT − σηρ

ab
e−bT +

σηρ

ab
e−(a+b)T

and

B′τ (z) = −e−z(T−t).

Furthermore,

Bτ (z)2 =
1

z2
− 2

z2
e−a(T−t) +

1

a
e−2z(T−t)

ϕ(t) = fM (0, t) +
σ2

2a2
− σ2

a2
e−at +

σ2

2a2
e−2at +

η2

2b2
− η2

b2
e−bt +

η2

2b2
e−2bt

+
σηρ

ab
− σηρ

ab
e−at − σηρ

ab
e−bt +

σηρ

ab
e−(a+b)t.

Therefore, the deterministic part in the zero-coupon bond price dynamic (12)
amounts to

P (t, T )[. . . ]dt = P (t, T )

[
fM (0, t) +

σ2

a2
e−a(T−t) − σ2

2a2
e−2a(T−t) +

η2

b2
e−b(T−t) − η2

2b2
e−2b(T−t)

+
σηρ

ab
e−a(T−t) +

σηρ

ab
e−b(T−t) − σηρ

ab
e−(a+b)(T−t)

− σ2

a2
e−aT +

σ2

2a2
e−2aT − η2

b2
e−bT +

η2

2b2
e−2bT

− σηρ

ab
e−aT − σηρ

ab
e−bT +

σηρ

ab
e−(a+b)T

+ e−a(T−t)x(t) + e−b(T−t)y(t) + (1− e−a(T−t)x(t) + (1− e−b(T−t))y(t)︸ ︷︷ ︸
=x(t)+y(t)

+
σ2

2a
− σ2

a2
e−a(T−t) +

σ2

2a2
e−2a(T−t) +

η2

2b2
− η2

b2
e−b(T−t) +

η2

2b2
e−2b(T−t)

+
σηρ

ab
− σηρ

ab
e−a(T−t) − σηρ

ab
e−b(T−t) +

σηρ

ab
e−(a+b)(T−t)

]
dt

= P (t, T )[x(t) + y (t) + ϕ(t)]dt

= P (t, T )r(t)dt

Therefore, the dynamic of the price of a zero-coupon bond under the risk neutral
measure Q is given by

dP (t, T ) = P (t, T )r(t)dt− P (t, T )Bτ (a)σdW 1(t)− P (t, T )Bτ (b)ηdW
2(t)
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A.2 The Dynamics of the Gauss2++ Factors x and y under the
Real World Measure

The dynamics of the two processes x and y under the risk neutral measure Q can
be expressed in terms of two independent Brownian Motions Ŵ 1 and Ŵ 2, i.e.

dx(t) = −ax(t)dt+ σdŴ 1(t)

dy(t) = −by(t)dt+ ηρdŴ 1(t) + η
√

(1− ρ2)dŴ 2(t)

where

dW 1(t) = dŴ 1(t)

dW 2(t) = ρdŴ 1(t) +
√

(1− ρ2)dŴ 2(t)

According to Girsanov’s theorem , as Ŵ = (Ŵ 1, Ŵ 2) is a standard 2-dimensional
Brownian Motion and let (Φ(t))t∈[0,T ] = (Φ1(t),Φ2(t))t∈[0,T ] be a progressive and
square-integrable process, the process W̆ defined by

W̆ (t) := Ŵ (t) +

∫ t

0

Φ(s)ds

is a 2-dimensional Brownian Motion under a new measure, which we call P and
declare to be the real world measure. This means that the dynamic of the two
Brownian Motion Ŵ 1 and Ŵ 2 und the real world measure P is given by

dŴ 1(t) = dW̆ 1(t)− Φ1(t)dt

dŴ 2(t) = dW̆ 2(t)− Φ2(t)dt

Therefore, the dynamics of the two processes x and y under the real world measure
are then given by

dx(t) =

[
Φ1(t)σ − ax(t)

]
dt+ σdW̆ 1(t)

dy(t) =

[
Φ1(t)ηρ+ Φ2(t)η

√
(1− ρ2)− by(t)

]
dt+ ηρdW̆ 1(t) + η

√
(1− ρ2)dW̆ 2(t)

If we specify Φ(t) as in (??) this simplifies to

dx(t) = a(dx(t)− x(t))dt+ σdW̆ 1(t)

dy(t) = b(dy(t)− y(t))dt+ ηρdW̆ 1(t) + η
√

(1− ρ2)dW̆ 2(t)

Representing the dynamics by two correlated Brownian Motions W̃ 1 and W̃ 2 re-
sults in the equations given in (5) and (6).
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A.3 Bond Price Dynamic under the Real World Measure
The dynamic of a zero-coupon bond price P (t, T ) under the risk neutral measure
Q expressed by the two independent Brownian Motions Ŵ 1 and Ŵ 2 is given by

dP (t, T ) = P (t, T )r(t)dt− P (t, T )Bτ (a)σdŴ 1(t)− P (t, T )Bτ (b)ηρdŴ
1(t)

− P (t, T )Bτ (b)η
√

(1− ρ2)dŴ 2(t)

= P (t, T )r(t)dt−
[
P (t, T )Bτ (a)σ + P (t, T )Bτ (b)ηρ

]
dŴ 1(t)

− P (t, T )Bτ (b)η
√

(1− ρ2)dŴ 2(t)

Applying Girsanov’s theorem as in appendix A.2 the dynamic under the real world
measure P amounts to

dP (t, T ) = P (t, T )r(t)dt−
[
P (t, T )Bτ (a)σ + P (t, T )Bτ (b)ηρ

]
dŴ 1(t)− P (t, T )Bτ (b)η

√
(1− ρ2)dŴ 2(t)

= P (t, T )

[
r(t) +

(
Bτ (a)σ +Bτ (b)ηρ

)(
−adx(t)

σ

)

+Bτ (b)η
√

(1− ρ2)

(
− bdy(t)

η
√

(1− ρ2)
+

ρadx(t)

σ
√

(1− ρ2)

)]
dt

−
[
P (t, T )Bτ (a)σ + P (t, T )Bτ (b)ηρ

]
dW̆ 1(t)− P (t, T )Bτ (b)η

√
(1− ρ2)dW̆ 2(t)

= P (t, T )

[
r(t) −Bτ (a)adx(t)−Bτ (b)bdy(t)

]
dt−

[
P (t, T )Bτ (a)σ + P (t, T )Bτ (b)ηρ

]
dW̆ 1(t)

− P (t, T )Bτ (b)η
√

(1− ρ2)dW̆ 2(t)

Representing the dynamic by two correlated Brownian Motions W̃ 1 and W̃ 2 re-
sults in the equations given in (9).
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A.4 Individual Discount Rate for the Zero-Coupon Bonds in
the Real World

Proof. To proof that P (t,T )
X(t,T )

is indeed a martingale we calculate the dynamic of the
discounted price process.

d
P (t, T )

X(t)
= d

(
1

X(t)
· P (t, T )

)

=
1

X(t)
dP (t, T ) + P (t, T )d

1

X(t)
+ d

〈
P (t, T ),

1

X(t)

〉

=
1

X(t)
dP (t, T )− P (t, T )

X(t)
[r(t)−B(a, t, T )adx(t)−B(b, t, T )bdy(t)] dt

=
P (t, T )

X(t)
[r(t)−B(a, t, T )adx(t)−B(b, t, T )bdy(t)] dt−

P (t, T )

X(t)
B(a, t, T )σdW̃ 1(t)

− P (t, T )

X(t)
B(b, t, T )ηdW̃ 2(t)− P (t, T )

X(t)
[r(t)−B(a, t, T )adx(t)−B(b, t, T )bdy(t)] dt

=
P (t, T )

X(t)
(B(a, t, T )σdW̃ 1(t)− P (t, T )

X(t)
B(b, t, T )ηdW̃ 2(t)

A.5 Bond Price Formula under the Real World Measure
To calculate the price of a zero-coupon bond, the distribution of

exp

(
−
∫ T

t

(r(u)−B(a, u, T )adx(u)−B(b, u, T )bdy(u)) du

)

has to be determined. In the following we show, that the integral in the exponent
is normaly distributed and calculate the mean and the variance

I(t, T ) :=

∫ T

t

(r(u)−B(a, u, T )adx(u)−B(b, u, T )bdy(u)) du. (13)

We first concentrate on the integral over the short-rate r(s), which is a sum of the
x- and the y-process and a deterministic function

r(s) = x(s) + y(s) + ϕ(s).
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The integral over the process x is given by
∫ T

t

x(u)du =

∫ T

t

(
x(t)e−a(u−t) +

∫ u

t

ae−a(u−s)dx(s)ds+

∫ u

t

σe−a(u−s)dW (s)

)
du

=

∫ T

t

x(t)e−a(u−t)du

︸ ︷︷ ︸
1©

+

∫ T

t

∫ u

t

ae−a(u−s)dx(s)dsdu

︸ ︷︷ ︸
2©

+

∫ T

t

∫ u

t

σe−a(u−s)dW (s)du

︸ ︷︷ ︸
3©

The first integral amounts to

1© = x(t)

∫ T

t

e−a(u−t)du = x(t)

[
−1

a
e−a(u−t)

]T

t

= x(t)
1− e−a(T−t)

a

For the second integral we use the integration by parts formula

2© =

∫ T

t

(∫ u

t

easdx(s)ds

)
ae−audu

= a

∫ T

t

(∫ u

t

easdx(s)ds

)
du

(∫ u

t

e−avdv

)

= a

[(∫ T

t

eaudx(u)du

)(∫ T

t

e−avdv

)
−
∫ T

t

(∫ u

t

e−avdv

)
eaudx(u)du

]

= a

[∫ T

t

(∫ T

u

e−avdv

)
eaudx(u)du

]

=

∫ T

t

(
1− e−a(T−u)

)
dx(u)du

=

∫ T

t

aB(a, u, T )dx(u)du
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For the third integral we again use the integration by parts formula

3© = σ

∫ T

t

(∫ u

t

easdW (s)

)
ae−audu

= σ

∫ T

t

(∫ u

t

easdW (s)

)
du

(∫ u

t

e−avdv

)

= σ

[(∫ T

t

eaudW (u)

)(∫ T

t

e−avdv

)
−
∫ T

t

(∫ u

t

e−avdv

)
eaudW (u)

]

= σ

[∫ T

t

(∫ T

u

e−avdv

)
eaudW (u)

]

= σ

∫ T

t

[
−e
−av

a

]T

u

eaudW (u)

=
σ

a

∫ T

t

(
1− e−a(T−u)

)
dW (u)

=
σ

a

∫ T

t

(
1− e−a(T−u)

)
dW (u)

We observe that the results of integral 2© for
∫ T
t
x(u)du and

∫ T
t
y(u)du cancel out

with the last two terms in equation (13). Therefore it remains

I(t, T ) =

∫ T

t

ϕ(u)du+
1− e−a(T−t)

a
x(t) +

1− e−b(T−t)
b

y(t)

+
σ

a

∫ T

t

(
1− e−a(T−u)

)
dW (u) +

η

b

∫ T

t

(
1− e−b(T−u)

)
dW (u).

The corresponding expression for
∫ T
t
y(u)du can be obtained analogously.
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A.6 Tables of Backtest Results

a b σ η ρ

30.09.2019 0.2694 0.0269 0.0121 0.0089 −0.8950
30.06.2019 0.1216 0.0628 0.0363 0.0283 −0.9687
31.03.2019 0.3978 0.0331 0.0333 0.0091 −0.8576
31.12.2018 0.1628 0.0521 0.0183 0.0154 −0.8629
30.09.2018 0.6100 0.0429 0.0459 0.0104 −0.8722
30.06.2018 0.2901 0.0459 0.0104 0.0112 −0.9941
31.03.2018 0.5120 0.0386 0.0142 0.0097 −1.0000
31.12.2017 0.3803 0.0471 0.0236 0.0120 −0.8854
30.09.2017 0.0880 0.0655 0.0421 0.0460 −0.9938
30.06.2017 0.1260 0.0890 0.0504 0.0517 −0.9963
31.03.2017 0.2940 0.0581 0.0152 0.0146 −0.9984
31.12.2016 0.2427 0.0606 0.0178 0.0173 −1.0000

Table 4: Calibration results of the risk neutral calibration on a quarterly basis from
31.12.2016 until 30.09.2019

dx dy

31.12.2019 -0.0112 0.0780
30.09.2019 -0.0676 0.7400
30.06.2019 -0.2848 0.5786
31.03.2019 -0.0267 0.3636
31.12.2018 -0.0539 0.2182
30.09.2018 -0.0107 0.1518
30.06.2018 -0.0173 0.1480
31.03.2018 -0.0112 0.1099
31.12.2017 -0.0150 0.0913
30.09.2017 -0.7023 0.9836
30.06.2017 -0.3883 0.5497
31.03.2017 -0.0330 0.1710
31.12.2016 -0.0405 0.1725

Table 5: Quarterly calibration results for the constant local long run risk premium
functions from 31.12.2016 to 31.12.2019.
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dx dy lx ly

31.12.2019 -0.0112 0.0780 -0.0081 -0.0086
30.09.2019 -0.0676 0.7400 -0.0099 -0.0106
30.06.2019 -0.2848 0.5786 -0.0419 0.0344
31.03.2019 -0.0267 0.3636 -0.0127 -0.0008
31.12.2018 -0.0539 0.2182 -0.0169 -0.0014
30.09.2018 -0.0107 0.1518 -0.0116 -0.0023
30.06.2018 -0.0173 0.1481 -0.0127 -0.0061
31.03.2018 -0.0112 0.1099 -0.0100 -0.0107
31.12.2017 -0.0150 0.0913 -0.0112 -0.0089
30.09.2017 -0.7023 0.9836 -0.0454 0.0189
30.06.2017 -0.3883 0.5497 -0.0469 0.0287
31.03.2017 -0.0330 0.1710 -0.0136 -0.0057
31.12.2016 -0.0405 0.1725 -0.0157 -0.0027

Table 6: Quarterly calibration results for the step local long run risk premium
functions from 31.12.2016 to 31.12.2019.

dx dy lx ly

31.12.0219 -0.0150 0.1670 -0.0081 -0.0086
30.09.0219 -0.1322 1.4990 -0.0099 -0.0106
30.06.2019 -0.5429 1.1402 -0.0419 0.0344
31.03.2019 -0.0445 0.7350 -0.0127 -0.0008
31.12.2018 -0.0952 0.4457 -0.0169 -0.0014
30.09.2018 -0.0095 0.3087 -0.0116 -0.0023
30.06.2018 -0.0227 0.3058 -0.0127 -0.0061
31.03.2018 -0.0127 0.2332 -0.0100 -0.0107
31.12.2017 -0.0200 0.1947 -0.0112 -0.0089
30.09.2017 -1.3827 1.9749 -0.0454 0.0189
30.06.2017 -0.7518 1.0945 -0.0469 0.0287
31.03.2017 0.0561 0.3538 -0.0136 -0.0057
31.12.2016 -0.0696 0.3549 -0.0157 -0.0027

Table 7: Quarterly calibration results for the linear local long run risk premium
functions from 31.12.2016 to 31.12.2019.
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