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Abstract

To determine the appropriate level of risk capital financial institutions are required to

empirically estimate and predict specific risk measures. Although regulation commonly

prescribes the forecasting horizon and the frequency with which risk assessments have to

be reported, the scheme with which the underlying data are sampled typically remains

unspecified. We show that, given assessment frequency and forecasting horizon, the choice

of the sampling scheme can greatly affect the results of risk assessment procedures. Specif-

ically, sequences of variance estimates are prone to exhibit spurious seasonality when the

assessment frequency is higher than the sampling frequency of non-overlapping return data.

We derive the autocorrelation function of such sequences for a general class of weak white

noise processes and for a general class of variance estimators. To overcome the problem

of spurious seasonality, we present a boundary-corrected exponentially-weighted moving-

average version of the two-scales variance estimator introduced in the realized-volatility

literature.
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1 Introduction

Reliable estimation and prediction of the volatility of financial instruments is key to sound

financial risk management. In practice, the return interval, the forecasting horizon and the

assessment frequency are specified by regulation or management policies. Typically, however,

the sampling frequency of the data underlying the empirical analysis remains unspecified. If the

sampling frequency of the return data is more granular than the horizon for risk assessment,

three strategies for estimating and forecasting risk measures are commonly adopted: (a) derive

a risk estimate that matches the return interval specified (e.g., one-day volatility from daily

return data) and then either use (square-root) scaling or derive model-based multi-step forecasts

to obtain estimates for longer (e.g., monthly, annual) horizons; (b) temporally aggregate the

underlying data so that they match the horizon for risk assessment, leadind to analyses with

overlapping samples; or (c) temporally aggregate the data so that samples do not overlap.1

In this paper, we address consequences of assessing risk for horizons that exceed the as-

sessment frequency of the risk estimates. This is, for example, the case when asset managers

rebalance weekly or monthly but assess and report risk at a daily frequency. Similar situations

arise in banking (Basel III) and insurance (Solvency II) regulation. According to the Basel

Committee on Banking Supervision (BCBS 2016), in Basel III, banks have to estimate the ten-

day-ahead expected shortfall (ES) on a daily basis; and BCBS (2016, §181 c) states that the

ten-day ES estimates need to be derived without scaling from shorter horizons and allows using

overlapping return data. Various studies have investigated possible consequences of using over-

lapping returns for risk estimation or, more general, for statistical inference.2 What has not been

studied are the consequences of the implicit overlap that arises when assessing risk measures at

a higher frequency than the sampling frequency of the data.

In the following, we restrict our analysis to the return variance, since other risk measures,

such as volatility, value-at-risk or expected shortfall, are directly or indirectly related to variance.

Moreover, for the sake of simplicity, we assume that returns are recorded at a daily frequency –

implying that the most granular sampling and assessment frequency is daily.3 To illustrate the

estimation strategies (a)–(c) outlined above, Figure 1 depicts possible specifications for return

interval and data sampling schemes in h-day-ahead assessments. The two rows in each panel

indicate the return data used for estimation on day t and t + 1, respectively. Panel (a) reflects

the sampling scheme for risk estimation based on daily return data. In this case, to derive h-

1See Andersen and Bollerslev (1998) and Andersen et al. (1999) for a detailed analysis and discussion of the
tradeoff between sampling frequency and forecast horizon. More recently Kole et al. (2017) studied the impact
of temporal and portfolio aggregation on the quality of ten-day ahead VaR forecasts.

2See, for example, Bod et al. (2002), Dańıelsson et al. (2016), Dańıelsson and Zhou (2016), Hansen and Hodrick
(1980), Hedegaard and Hodrick (2016), Kluitman and Franses (2002) and Mittnik (2011).

3Note, however, our results also apply to intraday analyses.
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Figure 1: Illustration of different combinations of return intervals and sampling schemes for deriving h-day-ahead
risk measures. Each panel consists of two rows: The first row sketches the data used for estimation at time t and
the second row those at t+1. Panel (a) shows a scheme with daily sampling of daily returns. Here, risk estimates
have to be scaled up to derive h-day-ahead risk estimates. Panel (b) illustrates the sampling scheme when using
overlapping h-day returns. Panel (c) indicates the scheme when using non-overlapping h-day returns.

day-horizon estimates, one needs to either rely on a scaling rule that approximates h-day risk

from one-day estimates or on some multi-step forecasting procedure. Panel (b) illustrate the

sampling when estimating with overlapping h-day returns at times t and t + 1. Finally, Panel

(c) shows the sampling scheme for returns when estimates are based on non-overlapping return

intervals, revealing the implicit overlap when the assessment frequency is higher than the data

sampling frequency. It is the latter scheme that is the main focus of this study.

In a recent study, Dańıelsson and Zhou (2016) consider sampling strategies (a)–(c) for ob-

taining h-day-ahead risk estimates. They concentrate on a comparison of strategy (a) (square-

root-of-time scaling) with strategy (b) (overlapping returns) with regards to bias and variance

of risk estimates. Our work differs in two regards: First, we focus directly on strategies based

on longer, namely, h-day return intervals. Given that BCBS (2016) explicitly rules out any risk

assessment based on scaling, but also to avoid excessive clutter, we do not consider scaling strate-

gies.4 Second, we are not only interested in the accuracy of risk estimates (i.e., bias, variance,

mean squared error etc.) at a given period, but also in the dynamic properties of risk estimates.

If data availability is not an issue, estimates based on non-overlapping returns are, from an

econometric point of view, the preferred choice (Dańıelsson and Zhou 2016). We need to be

concerned, however, when assessing variances at a higher frequency (e.g., daily) from return

4For a discussion of the square-root-of-time scaling see Christoffersen et al. (1998), Dańıelsson and Zigrand
(2006), Diebold et al. (1997) and McNeil and Frey (2000). Scaling rules under other than multivariate normal
processes and, especially, serially dependent observations are derived in Embrechts et al. (2005).

4



data that have longer return interval (e.g., weekly or monthly returns). We show that standard

variance estimators, such as the moving-window sample variance or the exponentially-weighted

moving average (EWMA) variance estimator (Riskmetrics 1996), tend to exhibit strong but

spurious saw-tooth patterns. Clearly, risk managers who are obliged to assess risk more often

(e.g., daily) than the horizon for risk-assessment implies (e.g., ten days in the Basel III or 259 days

in the Solvency II framework) need to be aware of the fact that strong seasonal patterns may be

induced. We demonstrate this phenomenon both empirically for real data and theoretically for

well-behaved data-generating processes (DGPs), such as Gaussian white noise or GARCH(p,q)

processes. We derive the theoretical autocorrelation function (ACF) for sequences of successive

variance estimates for a broad class of DGPs and variance estimators. Moreover, we present

variance estimators, based on overlapping h-day return intervals, that overcome the problem

of spurious seasonality. Specifically, we introduce a boundary-corrected exponentially-weighted

moving-average (EWMA) version of the two-scales estimator developed by Zhang et al. (2005).

Our estimator does not suffer from spurious seasonality and performs best when compared to a

range of alternative estimators.

The paper is organized as follows. In Section 2, using real data, we empirically illustrate

and explain the presence of spurious seasonality in sequentially estimated variances. Section 3

defines the DGPs considered in this study, summarizes relevant results pertaining to stochastic

processes and temporal aggregation, and derives quadratic-form representations for variance es-

timators. The theoretical ACF for sequences of daily estimated variances is derived in Section 4.

Moreover, the phenomenon of spurious seasonality is illustrated and explained on theoretical

grounds. Alternative variance estimators based on overlapping return intervals, but not suf-

fering from spurious seasonality, are discussed in Section 5. Section 6 compares all variance

estimators considered with respect to bias, variance, mean squared error (MSE) as well as their

responsiveness to shocks in the data. Finally, Section 7 summarizes and concludes.

2 Spurious Seasonality in Variance Estimates from Tem-

porally Aggregated, Non-Overlapping Returns

We are especially interested in the dynamic properties of sequential variance estimates. To

illustrate our concern, we consider bi-weekly returns (i.e., returns over ten trading days) of the

Dow Jones Industrial Average and look at two ways of displaying sequential variance estimates.

First, we compute ten different bi-weekly return series, one for each of the ten trading days in

the two-week window. For each of the ten return series we derive series of bi-weekly variance
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estimates, using an EWMA variance estimator (Riskmetrics 1996)

σ2
(h),t,λ =

h

tr(Q(h),∆,λ)

1− λ
1− λ∆

∆−1∑
δ=0

λδ(r(h),t−hδ − µ(h),t,λ)
2, (1)

where r(h),t is the h-day return at time t and µ(h),t,λ = 1−λ
1−λ∆

∑∆−1
δ=0 λ

δr(h),t−hδ is the EWMA

estimator for the first moment.5 We set λ = 0.96. The left graph in Figure 2 shows the ten

different series of variance estimates, (σ2
(10),10t+τ,λ)t∈Z, for 1 ≤ τ ≤ 10, each corresponding to a

specific starting day. The right graph in Figure 2 is obtained by combining the ten bi-weekly

variance estimates to a single, daily sequence. In other words, we appropriately connect the bi-

weekly estimates, (σ2
(10),t,λ)t∈Z, obtained at a daily frequency and shown in the plot on the left.

This means that the distance between two adjacent points of the sequence of variance estimates

is always one day rather than ten days, as is the case with the plots on the left.
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Figure 2: Estimated EWMA variances of the Dow Jones Industrial Average (DJIA) based on ten-day log-returns
with a window length of 100 bi-weekly returns and an EWMA parameter of λ = 0.96. The first (last) estimates in
both graphs are for 01-Jan-2010 (for 28-Feb-2018). The graph on the left shows at the top ten series of bi-weekly
variance estimates, each corresponding to a specific weekday and start date, and the one on the right the daily
series of bi-weekly variance estimates. The corresponding ten-day log-returns are plotted at the bottom of both
graphs.

Each variance estimate shown in Figure 2 is based on non-overlapping ten-day returns. How-

ever, the assessment frequency of the estimates is higher than the sampling frequency of the

underlying data set. As a consequence, there is a substantial overlap in data used for successive

estimates.

In the following, we study the pronounced sawtooth pattern of the series of daily variance

estimates shown on the right of Figure 2. Furthermore, we explain the reason for the slowly

changing patterns in the ten variance series plotted on the left of Figure 2. To characterize the

5 The multiplicative constant h
tr(Q(h),∆,λ) =

(
1− (1−λ)2(1−λ2∆)

(1−λ∆)2(1−λ2)

)−1
is the bias-correction factor, see (3).
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properties of estimated variance sequences we examine their autocorrelation function (ACF).

The sample ACF of the daily series of estimates, (σ2
(10),t,λ)t∈Z, based on bi-weekly data, shown

in Figure 3, displays a systematic periodic pattern, a feature we refer to as spurious seasonality.

As will be shown below, this seasonal pattern is due to the sampling scheme for the data used
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Figure 3: Sample autocorrelation function (ACF) for the daily series of bi-weekly EWMA variance estimates
based on non-overlapping ten-day log-returns. The plot shows the sample ACF for the series of EWMA variance
estimates for the Dow Jones Industrial Average (DJIA) from 01-Jan-2010 to 28-Feb-2018.

for variance estimation.

3 Some Prerequisites and Notation

In this section we introduce the two stochastic processes used in the analysis below, establish nec-

essary notation, and briefly summarize relevant results on the temporal aggregation of stochastic

processes. Finally, we introduce the (conditional) variance estimators that are the focus of this

study.

3.1 Data Generating Stochastic Processes

We consider two data generating processes, the Gaussian white noise process and the GARCH(p,q)

process. Both processes are so-called weak white noise processes.

Definition 1. A stochastic process, (xt)t∈Z, is called weak white noise process, if ∀t, t1, t2 ∈ Z,

t1 6= t2:

(i) E(xt) = µ, with |µ| <∞,

(ii) Var(xt) = σ2, with 0 < σ2 <∞,

(iii) Cov(xt1 , xt2) = 0.
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The Gaussian white noise process (Example 1) is the special case of independent and iden-

tically distributed (i.i.d.) random variables with normal distribution.

Example 1. A stochastic process, (xt)t∈Z, is called Gaussian white noise process, if (xt)t∈Z is a

white noise process and xt
i.i.d.∼ N(µ, σ2).

As a second case we consider the generalized autoregressive conditional heteroskedasticity

(GARCH) process (Example 2) introduced by Engle (1982) and Bollerslev (1986), a model class

that is widely used in academic research and in practice in order to model the volatility of

financial returns.

Example 2. Let (εt)t∈Z be a sequence of i.i.d. random variables and let p ∈ N and q ∈ N0.

Further, let α0 > 0, α1, . . . , αq ≥ 0 and β1, . . . , βp ≥ 0 and assume
∑q

i=1 αi +
∑p

i=1 βi < 1,

such that the process is weakly stationary.6 Then, a GARCH(p,q) process, (xt)t∈Z, with strictly

positive volatility process, (σt)t∈Z, is defined by

xt = σtεt, σ2
t = α0 +

q∑
i=1

αix
2
t−i +

p∑
i=1

βiσ
2
t−i.

3.2 Temporal Aggregation of Returns and Stochastic Processes

Let (Pt)t∈Z denote the process of daily prices of an asset, (rt)t∈Z with rt = ln(Pt)− ln(Pt−1) the

process of daily log-returns, and let vector rt,δ := [rt−δ+1, rt−δ+2, . . . , rt−1, rt]
′ collect the δ daily

returns from day t− δ + 1 up to and including day t. h-day returns, h > 1, are then given by

r(h),t = ln(Pt)− ln(Pt−h) =
h−1∑
j=0

rt−j = 1′hrt,h,

where 1h is an h× 1 column vector of ones. We call h the aggregation horizon.

In the following, we will always assume that the process of daily log-returns, (rt)t∈Z, is

generated by a weak white noise process (Definition 1) and, in some instances, consider the

Gaussian white noise (Example 1) and the GARCH(p,q) process (Example 2) as special cases.

If we assume that the daily log-return series, (rt)t∈Z, is a Gaussian white noise process with

E(rt) = µ = 0 and variance E(r2
t ) = σ2 < ∞, the temporally aggregated series, (r(h),th)t∈Z,

where the sampling frequency coincides with the aggregation horizon, is again a Gaussian white

noise process but with variance E(r2
(h),th) = hσ2 <∞. The situation changes, however, when the

sampling frequency is lower than the aggregation horizon. This would, for example, be the case

6These restrictions on the parameter space guarantee a positive conditional variance σ2
t in the case of normally

distributed innovations (Bollerslev 1986). Weaker necessary and sufficient conditions for a positive conditional
variance are given in Nelson and Cao (1992).
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when sampling h-day returns, h > 1, on a, say, daily basis. Then, (r(h),t)t∈Z turns out to be a

non-invertible moving average process of order h− 1 (in short: MA(h− 1) process) (Hansen and

Hodrick 1980), with parameters θj = 1 for 1 ≤ j ≤ h−1, i.e., r(h),t =
∑h−1

j=0 rt−j =
∑h−1

j=1 θjrt−j +

rt, where (rt)t∈Z is the weak white noise series of daily log-returns. The autocorrelation function

(ACF) ρr(h),t
(`) for the process (r(h),t)t∈Z is given by (cf. Mittnik (1988))

ρr(h),t
(`) = Corr(r(h),t, r(h),t−`) =


∑h−1−|`|
j=0 θjθj+|`|∑h−1

j=0 θ
2
j

= h−|`|
h

, |`| ≤ h− 1,

0 , |`| ≥ h,

where we set θ0 = 1 for notational simplicity. Similar results can also be obtained under some

regularity conditions for the GARCH(p,q) process.7

3.3 Estimating Variances

Analogous to the vector of daily returns, let r(h),t,∆ =
[
r(h),t−h(∆−1), r(h),t−h(∆−2), . . . , r(h),t−h, r(h),t

]′
be the ∆-period vector of non-overlapping h-day returns up to and including time t. Denoting

the ∆×∆ identity matrix by I∆, we define the h∆×∆ matrix H = I∆ ⊗ 1h, where ⊗ is the

Kronecker product, so that r(h),t,∆ = H ′rt,h∆.

The most common estimator for the dispersion of returns is the sample variance. Defining

the idempotent matrix D ∈ R∆×∆, D = I∆ − 1
∆

1∆1′∆, the moving-window sample variance for

non-overlapping h-day returns is given by

σ2
(h),t =

1

∆− 1

∆−1∑
δ=0

(r(h),t−hδ − µ(h),t)
2 =

1

∆− 1
r′(h),t,∆D

′Dr(h),t,∆ =
1

∆− 1
r′t,h∆HDH

′rt,h∆,

with µ(h),t = 1
∆

1′∆r(h),t,∆ = 1
∆

1′∆H
′rt,h∆ being the sample mean.

Below, we only discuss moving-window-type estimators. We restrict ourselves to this kind

of estimators because in practice estimation is always based on a finite amount of data, so that

finite-sample properties are of a relevance. The generalization of the results to the increasing

window case is straightforward.8

Many variance estimators can be written as quadratic forms of the daily return vector,

rt,h∆, i.e., σ2
(h),t = r′t,h∆Qrt,h∆, where Q ∈ Rh∆×h∆ is a positive definite, symmetric matrix.

Examples are the sample variance given above, but also the exponentially-weighted moving

7Temporal aggregation of GARCH processes has been investigated by Drost and Nijman (1993), and a survey
of studies on temporal aggregation of various types of univariate and multivariate time series processes is provided
by Silvestrini and Veredas (2008).

8Asymptotic properties of sample variances when data are generated by a GARCH process are derived in
Horváth et al. (2006).
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average (EWMA) variance estimator (Riskmetrics 1996).

If we assume a weak white noise process (Definition 1) for (rt)t∈Z with Var(rt) = σ2, we have

E(r′t,h∆Qrt,h∆) = σ2tr(Q), and the bias of the variance estimator, r′t,h∆Qrt,h∆, is

Bias(r′t,h∆Qrt,h∆) = E(r′t,h∆Qrt,h∆)− Var(r(h),t) = σ2(tr(Q)− h). (2)

Therefore, variance estimates of the form r′t,h∆Qrt,h∆, can be bias-corrected by multiplying with

factor h
tr(Q)

, i.e., by using

σ2
(h),t = r′t,h∆Qrt,h∆, (3)

as variance estimate with Q = h
tr(Q)

Q. Throughout the paper, we will use the bias-corrected

versions of the variance estimators but will, in general, only define Q. Quantities Q and Q are

always related by Q = h
tr(Q)

Q.

Specifically, the sample variance for non-overlapping h-day returns is given by

σ2
(h),t = r′t,h∆Q(h),∆rt,h∆, (4)

with Q(h),∆ = 1
∆
HDH ′ = 1

∆
(I∆ ⊗ 1h)(I∆ − 1

∆
1∆1′∆)(I∆ ⊗ 1′h), and the EWMA variance for

non-overlapping h-day returns (1) by

σ2
(h),t,λ =

h

tr(Q(h),∆,λ)

1− λ
1− λ∆

∆−1∑
δ=0

λδ(r(h),t−hδ − µ(h),t,λ)
2 = r′t,h∆Q(h),∆,λrt,h∆, (5)

with Q(h),∆,λ = HE′ΛEH ′ = (I∆ ⊗ 1h)(I∆ − w1′∆)Λ(I∆ − 1∆w
′)(I∆ ⊗ 1′h) and λ ∈ (0, 1).

Vector w ∈ R∆×1 and matrices Λ,E ∈ R∆×∆ are defined by w = 1−λ
1−λ∆ ·

[
λ∆−1, λ∆−2, . . . , λ1, 1,

]′
,

Λ = Diag(w) = (w1′∆)� I∆ and E = I∆− 1∆w
′, respectively, with � denoting the Hadamard

product.

4 Autocorrelation of Estimated Variances

4.1 Theoretical Derivation

Let matrices K,L ∈ Rh∆+`×h∆ be defined by K =
[
0(h∆×`), Ih∆

]′
and L =

[
Ih∆,0(h∆×`)

]′
,

` ≥ 0, where 0(h∆×`) denotes an h∆× ` matrix of zeros, so that rt,h∆ = K ′rt,h∆+` and rt−`,h∆ =

L′rt,h∆+`. Variance estimators are then given by the quadratic-form

σ2
(h),t = r′t,h∆Qrt,h∆ = r′t,h∆+`KQK

′rt,h∆+`. (6)
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We obtain the sample variance specified in (4) for Q = Q(h),∆ and the EWMA variance specified

in (5) for Q = Q(h),∆,λ. Similarly, the (` days) lagged variance estimator is given by

σ2
(h),t−` = r′t−`,h∆Qrt−`,h∆ = r′t,h∆+`LQL

′rt,h∆+`. (7)

Expressions (6) and (7) allow us to write the variance estimator, σ2
(h),t, and its lagged version,

σ2
(h),t−`, as quadratic forms of the very same vector of daily returns, rt,h∆+`. The quadratic forms

KQK ′ and LQL′ turn out to be block-diagonal matrices, with KQK ′ = blkDiag(0(`×`),Q)

and LQL′ = blkDiag(Q,0(`×`)).

Next, to further analyze the properties of estimated variances based on non-overlapping h-

day returns assessed at a frequency higher than the aggregation horizon, we derive the ACF of

the series of estimated variances, (σ2
(h),t)t∈Z. Theorem 1 states a well-known result about the

covariance of two quadratic forms of the same multivariate normally distributed random vector.

It follows directly from results in Magnus (1978) on moments of products of quadratic forms for

multivariate normally distributed random variables.

Theorem 1. Let A,B ∈ Rn×n be symmetric matrices and X be multivariate normally dis-

tributed n× 1 vector with µ = E(X) and Σ = E((X −µ)(X −µ)′) = E(XX ′)−µµ′. For the

quadratic forms X ′AX and X ′BX we have

Cov(X ′AX,X ′BX) = 2tr(AΣBΣ) + 4µ′AΣBµ.

Proof. This follows directly from Lemma 6.2 in Magnus (1978).

The following corollary to Theorem 1 establishes the autocovariance function of the variances

given by the quadratic forms (3) when the daily log-returns, (rt)t∈Z, follow a Gaussian white

noise process.9

Corollary 1. Let (rt)t∈Z be a Gaussian white noise process (Example 1) with E(rt) = 0 and

variance V ar(rt) = σ2 and consider variance estimates of the form σ2
(h),t = r′t,h∆Qrt,h∆ (Eq.

(3)). Then, the autocovariance of the series (σ2
(h),t)t∈Z, for ` ≥ 0, is given by

γσ2
(h),t

(`) = Cov(σ2
(h),t, σ

2
(h),t−`) = 2σ4 tr(KQK ′LQL′).

Proof. See Appendix A.1.

9For the sake of simplicity, we assume a Gaussian white noise process with zero mean. In case of E(rt) = µ 6= 0,
we have γσ2

(h),t
(`) = 2σ4 tr(KQK ′LQL′) + 4µ2σ21′h∆+`KQK

′LQL′1h∆+`.
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Note that for ` > h∆

γσ2
(h),t

(`) = 2σ4 tr(KQK ′LQL′) = 2σ4 tr(0(h∆×h∆)Q0(h∆×h∆)Q) = 0,

and, by definition, the ACF for ` ≥ 0 is given by ρσ2
(h),t

(`) = γσ2
(h),t

(`)/γσ2
(h),t

(0).

In the following, we extend Theorem 1 to a more general class of weak white noise processes

which contains many zero-mean weak white noise processes – especially, the Gaussian white

noise process with µ = 0 and GARCH(p,q) processes.

Theorem 2. Let (xt)t∈Z be a stochastic process with E(|xt|i) < ∞, for t ∈ Z and i ≤ 4. For

t1, t2, t3, t4 ∈ Z with ∀i, j ∈ {t1, t2, t3, t4}, i 6= j, we assume

E(xt1) = 0, (8)

E(xt1xt2xt3xt4) = 0, (9)

E(x2
t1
xt2xt3) = 0, (10)

E(x3
t1
xt2) = 0. (11)

Let X = [x1, . . . , xn]′ and define X2� = X �X = [x2
1, . . . , x

2
n]′. Furthermore, define vector

µX2� ∈ Rn×1 and matrices ΣX ,ΣX2� ∈ Rn×n by

ΣX = E(XX ′), µX2� = E(X2�) and ΣX2� = E(X2�X2� ′)− µX2� µ′X2� ,

respectively. Then, for symmetric matrices A,B ∈ Rn×n, we have

Cov(X ′AX,X ′BX) = tr(C(ΣX2� + µX2� µ′X2�))− tr(AΣX)tr(BΣX),

where C = ab′ + 2A�B � (1n1
′
n − In), with a = diag(A) = (A� In)1n and b = diag(B) =

(B � In)1n.

Proof. See Appendix A.2.

Again, a corollary to Theorem 2 establishes the autocovariance function of the quadratic-

form variance estimator when the daily log-return process, (rt)t∈Z, is a weak white noise process

(Definition 1) satisfying the moment conditions (8)-(11).

Corollary 2. Let (rt)t∈Z be a weak white noise process fulfilling the moment conditions (8)-

(11). Moreover, let σ2 = Var(rt) = E(r2
t ) and r2�

t,h∆+` = rt,h∆+` � rt,h∆+`, and define vector

µr2�
t,h∆+`

∈ Rh∆+`×1 and matrix Σr2�
t,h∆+`

∈ Rh∆+`×h∆+` by

µr2�
t,h∆+`

= E(r2�
t,h∆+`) and Σr2�

t,h∆+`
= E(r2�

t,h∆+`r
2� ′
t,h∆+`)− µr2�

t,h∆+`
µ′

r2�
t,h∆+`

,

12



respectively. Then, considering variance estimates of the form σ2
(h),t = r′t,h∆Qrt,h∆, the autoco-

variance of the series (σ2
(h),t)t∈Z, for ` ≥ 0, is given by

γσ2
(h),t

(`) = tr
(
CΣr2�

t,h∆+`

)
+ 2σ4

(
tr(KQK ′LQL′)− a′b

)
,

with C = ab′ + 2(KQK ′) � (LQL′) � (1h∆+`1
′
h∆+` − Ih∆+`), where a = diag(KQK ′) and

b = diag(LQL′).

Proof. See Appendix A.3.

Remark 1. The following processes satisfy the conditions of Corollary 2 and especially the

moment conditions (8)-(11):

(i) For µ = 0, the Gaussian white noise process (Example 1) clearly fulfills all conditions.

(ii) Let (xt)t∈Z be a GARCH(p,q) process as defined in Example 2. For the innovations, (εt)t∈Z,

we assume a sequence of i.i.d. random variables being symmetrically distributed such that

odd moments are zero. We further assume that the first four moments of (xt)t∈Z exist.10 In

Appendix A.4 we show that under these conditions the GARCH(p,q) satisfies all conditions

such that Corollary 2 holds.

(iii) Under some regularity conditions, even more general classes of GARCH processes satisfy

the conditions of Corollary 2. For discussions on families of GARCH processes and con-

ditions on stationarity and the existence of moments see He and Teräsvirta (1999b) and

Ling and McAleer (2002b).

(iv) Due to the moment conditions (8)-(11), the autocovariance in Corollary 2 only depends

on the variance σ2 = Var(rt), µr2�
t,h∆+`

, and the variance-covariance matrix of the vector

of squares, Σr2�
t,h∆+`

. If the daily returns are, for example, asymmetrically distributed or

follow a GARCH process with leverage, the moment conditions have to be weakened and

additional terms, like unconditional skewness, are necessary to compute autocovariances.

Note that these moments are often not available in closed form (He et al. 2008).

The functional form of the relevant unconditional moments for different GARCH processes

have been derived in He and Teräsvirta (1999a) and Karanasos (1999).

10 Conditions for the existence of moments can be found in He and Teräsvirta (1999b) and Bollerslev (1986)
for the GARCH(1,1) case and in Ling and McAleer (2002a) for GARCH(p,q).
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4.2 Illustration

We illustrate the theoretical results of the previous section by presenting plots of the theoretical

ACF and those obtained from a simulation study. All illustrations in this section are for a

GARCH(1,1) data generating process and the EWMA variance estimator (5).11

Let (rt)t∈Z be generated by the GARCH(1,1) process

rt = σtεt, σ2
t = α0 + α1r

2
t−1 + β1σ

2
t−1, (12)

with εt
i.i.d.∼ N (0, 1) and parameter vector, [α0, α1, β1]′ := [0.01, 0.05, 0.94]′, parameter values

that are typical for daily stock returns. As estimator for the h-day variance at time t we use

the EWMA estimator (5) with λ = 0.96. In view of the Basel III rules (BCBS 2016), we chose

h = 10 as aggregation horizon, i.e., we consider a bi-weekly target horizon as, for example, in

Kole et al. (2017).

As for the ten-day return series itself, we can obtain ten different series of estimates for the

variance if we synchronize assessment and sampling frequencies to be equal to the aggregation

horizon of h = 10 days, namely, (σ2
(h),ht+τ,λ)t∈Z, for 1 ≤ τ ≤ h.12 As window length for the

rolling-window estimates we choose ∆ = 100, giving rise to h∆ = 1000 daily observations which

corresponds to roughly four years of return data. At any point in time, each estimate is based

on ∆ non-overlapping h-day returns or h∆ daily returns. Two consecutive estimates, σ2
(h),t,λ and

σ2
(h),t+1,λ (or σ2

(h),t−1,λ), have h∆ − 2 daily return observations in common. Our simulations are

based on the GARCH(1,1) process defined in (12) with a sample size of 8× 250 = 2000 trading

days or about eight calendar years.

The left graph in Figure 4 shows the ten different series of variance estimates, (σ2
(h),th+τ,λ)t∈Z,

1 ≤ τ ≤ h, obtained when assessment and sampling frequencies are synchronized. In each of

the ten plots, two consecutive points, (σ2
(h),th+τ,λ)t∈Z, 1 ≤ τ ≤ h, have distance h = 10. The

graph on the right shows the sequence of daily EWMA variance estimates, (σ2
(h),t,λ)t∈Z, based on

non-overlapping h-day returns.

The plots for the simulations in Figure 4 are constructed as those for the DJIA returns in

Figure 2. The daily series of EWMA variances estimates (right graph in Figure 4) fluctuates

in a highly regular fashion, mimicking a strong seasonal pattern. From a risk management

perspective, such strong fluctuations are bound to have detrimental implications as they induce

volatile risk capital charges and risk mitigation activities.

11Appendix B.1 presents plots for a Gaussian white noise data generating process and variance being estimated
by the sample variance (4).

12By synchronization of the assessment and sampling frequency we mean that the value of τ ∈ {1, . . . , h}
is the same for the series of h-day returns, (r(h),ht+τ,λ)t∈Z, and the series of (assessed) variance estimates,
(σ2

(h),ht+τ,λ)t∈Z. That is, both series are sampled on the same equidistant grid where we observe an h-day return
and estimate the variance on every h-th day.

14
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Figure 4: Time series of EWMA variance estimates (5), σ2
(h),t,λ, for simulated daily return series from

GARCH(1,1) process (12). The plot on the left shows the estimates (σ2
(10),10t+τ,λ)t∈Z, for 1 ≤ τ ≤ 10. The

right plot shows the series (σ2
(10),t,λ)t∈Z. Both plots are based on bi-weekly (h = 10) returns and estimation

window ∆ = 100.

To derive the autocovariances of the series of variance estimates, (σ2
(h),t,λ)t∈Z, assuming a

GARCH(1,1) process for the daily returns, (rt)t∈Z, we use the fact that the variance-covariance

matrix of the vector of squared returns, r2�
t,h∆+` = [r2

t−h∆−`+1, . . . , r
2
t ]
′, is given by the symmetric

Toeplitz matrix (cf. He and Teräsvirta (1999a) or Karanasos (1999))

Σr2�
t,h∆+`,[i,i+j]

=

γr2
t
(0) , 1 ≤ i ≤ h∆ + `, j = 0,
γ
r2t

(1)

(α1+β1)1−j , 1 ≤ i ≤ h∆ + `− 1, 1 ≤ j ≤ h∆ + `− i,

where γr2
t
(0) and γr2

t
(1) denote the variance and first-order autocovariance, respectively, of the

squared returns from a GARCH(1,1) process. Thus, if daily returns follow a GARCH(1,1) pro-

cess, the autocorrelation of the process of daily exponentially-weighted moving-average variances

(5), (σ2
(h),t,λ)t∈Z, based on non-overlapping h-day returns, can be computed via Corollary 2 by

plugging in Q(h),∆,λ, Σr2�
t,h∆+`

and Var(rt) = α0/(1− α1 − β1) into the formula for the autoco-

variance and scaling via ρσ2
(h),t,λ

(`) = γσ2
(h),t,λ

(`)/γσ2
(h),t,λ

(0).

The ACF with estimates based on daily return samples of size h∆ = 1000 is presented on

the left in Figure 5. The graph shows the effect for the aggregation horizons h = 5, 10, 20,

amounting to quasi-weekly, quasi-bi-weekly and quasi-monthly return periods. It demonstrates

that the ACF of EWMA variances, ρσ2
(h),t,λ

(`), based on non-overlapping h-day returns, is highly

cyclical and slowly decaying. The (spurious) seasonality that is present in the sample ACF of

estimated variances for the DJIA data (Figure 3) is compatible with the (spurious) seasonality

in the theoretical ACF in Figure 5. The right graph in Figure 5 further illustrates the interaction

between aggregation horizon, h, and the window length, ∆. The aggregation horizon is bi-weekly

(h = 10) and the window length, ∆, assumes values 25, 50 and 100, i.e., roughly one, two and
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Figure 5: The ACF of EWMA variances (5), σ2
(h),t,λ, for daily returns from GARCH(1,1) process (12). For the

left plot we use a fixed number of daily returns to derive the EWMA variances. The right plot depicts the ACF
of EWMA variances based on bi-weekly (h = 10) returns and estimation windows ∆ = 25, 50, 100.

four calendar years of daily return, respectively.

The formula for the autocovariance γσ2
(h),t,λ

(`) given in Corollary 2 and for the ACF are

rather handy. But it offers little insight into where the spurious seasonality exactly comes from

or how the amplitude of the periodic spurious seasonality in the ACF depends on the variance

estimator and the data generating process. Appendix B.2 expresses the ACF as the sum of three

components, which provide more insight and show that the term (KQK ′)� (LQL′) is crucially

responsible for the spurious seasonality in the ACF.

The left graph in Figure 4 shows a pronounced periodicity, though it is not always the same

observation within the h-day periods that assumes the highest or lowest value. In other words,

the order statistics of the different estimates within an h-day period fluctuate, but do so rather

slowly. Therefore, if the focus is on bi-weekly risk estimation but assessment occurs at a daily

frequency, then, by construction, the ordering of the ten different variance estimates in a two-

week period gradually changes over time. The color-coded series of EWMA variances on the

left in Figure 4 make clear that, at some point in time, any particular color may be on top

(or bottom) and that there is a high probability that this will also hold for the following h-day

period.

To get further insights into why the order statistics gradually change over time, we take a

look at the ACF of the first difference of the estimated variances,

γσ2
(h),t
−σ2

(h),t−1
(`) = 2γσ2

(h),t
(`)− γσ2

(h),t
(`+ 1)− γσ2

(h),t
(|`− 1|),

` ≥ 0. The ACF of the first differences of the estimated variances, ρσ2
(h),t,λ

−σ2
(h),t−1,λ

(`), is plotted

in Figure 6, where we used the same settings as for the ACF of the EWMA variances shown

in Figure 5. The plots in Figure 6 demonstrate that the series of first differences is highly
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Figure 6: The ACF of the first difference of EWMA variances (5), σ2
(h),t,λ, for daily returns from GARCH(1,1)

process (12). For the left plot we use a fixed number of daily returns to derive the EWMA variances. The
right plot depicts the ACF of the first difference of EWMA variances based on bi-weekly (h = 10) returns and
estimation windows ∆ = 25, 50, 100.

autocorrelated for lags being multiples of the aggregation horizon, h. This means, the change of

the estimate from one day to another is highly autocorrelated with that of h days ago. At lags

that are not multiples of h, the autocorrelations of the first-order differences are quite small and

slightly negative. This behavior explains the slowly changing ordering of the h different variance

series in the left graph of Figure 4.

5 The Case of Overlapping Aggregated Returns

The previous section showed that daily variance estimates based on non-overlapping h-day re-

turns suffer from spurious seasonality. In cases where the aggregation horizon is fixed, the only

alternative is to synchronize both assessment and sampling at a daily frequency, i.e., to use over-

lapping h-day returns for daily risk estimations. In the following we consider several variance

estimators for overlapping returns that avoid spurious seasonality.

The simplest variance estimator based on overlapping h-day returns is to apply standard

formulas for variance estimators to sets of overlapping return observations. The quadratic-form

representations for the sample variance for overlapping h-day returns is given by

σ̌2
(h),t =

h

tr(Q̌(h),∆)

1

h(∆− 1) + 1

h(∆−1)∑
τ=0

(r(h),t−τ − µ̌(h),t)
2 = r′t,h∆Q̌(h),∆rt,h∆, (13)

with Q̌(h),∆ = 1
h(∆−1)+1

∑h−1
j=0 S

′
jSj, S0 = H ′−1∆1′∆J

′ and Sj = H ′j−a1′∆J
′, for 1 ≤ j ≤ h−1,

17



where J = H +
∑h−1

j=1 Hj, a =
[
1′∆−1 0

]′
and

Hj =

 0(h−j×1) 0(h−j×∆−1)

0(h(∆−1)×1) I∆−1 ⊗ 1h

0(j×1) 0(j×∆−1)

 ,
and the EWMA variance for overlapping h-day returns by

σ̌2
(h),t,λ =

h

tr(Q̌(h),∆,λ)

1− λ 1
h

1− λh(∆−1)+1
h

h(∆−1)∑
τ=0

λ
τ
h (r(h),t−τ − µ̌(h),t,λ)

2 = r′t,h∆Q̌(h),∆,λrt,h∆, (14)

with Q̌(h),∆,λ =
∑h−1

j=0 λ
j
h S̃
′
jΓS̃j, S̃0 = H ′ − 1∆γ

′G′ and S̃j = H ′j − aγ ′G′, for 1 ≤ j ≤
h − 1, with G = H +

∑h−1
j=1 λ

j
hHj and, for λ ∈ (0, 1), Γ = Diag(γ) = (γ1′∆) � I∆, where

γ = 1−λ1/h

1−λ(h(∆−1)+1)/h

[
λ∆−1, λ∆−2, . . . , λ1, 1,

]′
. Graphical evidence (not shown here) indicates that

these variance estimators do not suffer from spurious seasonality.13

Another approach to avoid spurious seasonality is to simply take the average of the last h

sample variances based on non-overlapping h-day returns. In the (ultra-)high-frequency context,

this type of post-averaging of subsampling-based variance estimates has been proposed in Zhang

et al. (2005) to overcome problems arising from microstructure noise. It is referred to as two-

scales realized volatility and provides a consistent estimator of integrated volatility under the

assumption of additive white noise. In the following, we show that the two-scales estimator has

the potential to solve the spurious seasonality problem in variance estimation.14

For our setting, we obtain the two-scales sample variance15

σ̄2
(h),t =

1

h
r′t,h∆Q(h),∆rt,h∆ +

1

h

h−1∑
j=1

r′t−j,h(∆−1)Q(h),∆−1rt−j,h(∆−1) = r′t,h∆Q̄(h),∆rt,h∆, (15)

13It turns out that there are two additional variance estimators based on overlapping returns that overcome
spurious seasonality. In this section we report results for only one of the three variance estimators and refer to
Appendix B.3 for graphical results and a comparison of all four EWMA variance estimators considered.

14In the high-frequency literature, several other variance estimators, such as the the multi-scales realized
volatility (Zhang 2006) and the pre-averaging approach (Jacod et al. 2009), have been proposed. As the two-scales
estimator, they can overcome spurious seasonality. We restrict ourselves, however, to the two-scales estimator of
Zhang et al. (2005), since it is the simplest variance estimator handling the problem of spurious seasonality.

15Use of Q(h),∆ instead of Q(h),∆ in (15) yields the biased “second-best” two-scales variance estimator of Zhang

et al. (2005). The biased-corrected version (15), σ̄2
(h),t, is obtained by using Q(h),∆.
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with Q̄(h),∆ = 1
h
Q(h),∆ + 1

h

∑h−1
j=1 T j(Q(h),∆−1), where for symmetric matrices Q ∈ Rh(∆−1)×h(∆−1)

T j(Q) =

 0(h−j×h−j) 0(h−j×h(∆−1)) 0(h−j×j)

0(h(∆−1)×h−j) Q 0(h(∆−1)×j)

0(j×h−j) 0(j×h(∆−1)) 0(j×j)

 .
For the two-scales EWMA variance we have

σ̄2
(h),t,λ =

1− λ 1
h

1− λ
(
r′t,h∆Q(h),∆,λrt,h∆+

h−1∑
j=1

λ
j
hr′t−j,h(∆−1)Q(h),∆−1,λrt−j,h(∆−1)

)
= r′t,h∆Q̄(h),∆,λrt,h∆,

(16)

with Q̄(h),∆,λ = 1−λ
1
h

1−λ Q(h),∆,λ + 1−λ
1
h

1−λ
∑h−1

j=1 λ
j
hT j(Q(h),∆−1,λ).

The variance estimators studied so far can be written as quadratic forms and, thus, straight-

forwardly visualized in form of heatmaps as shown in Figure 7. Each pixel in a heatmap corre-

sponds to an entry in matrix Q in quadratic form r′t,h∆Qrt,h∆ in (3). The entries in Q can be

interpreted as weights of cross-products rt−xrt−y, whose magnitude is indicated by the color scale

in Figure 7. It is evident that the subsampling-based post-average EWMA variance estimator

(16), shown in the lower left plot in Figure 7 as well as the EWMA variance based on overlapping

h-day returns (top right) given by (14) have boundary problems. The weights assigned to the

most recent squared return observations, r2
t−j, 0 ≤ j ≤ h− 1, are much lower than the weight of

the lagged squared return, r2
t−h.

To eliminate such undesirable boundary effects, we propose modifications to the two-scales

estimator of Zhang et al. (2005) and the EWMA variant. The two-scales sample variance with

boundary-correction is given by

σ̃2
(h),t = r′t,h∆Q̃(h),∆rt,h∆, (17)

with Q̃(h),∆ = h
tr(Q̃(h),∆)

Q̃(h),∆ and Q̃(h),∆ ∈ Rh∆×h∆ being a symmetric Toeplitz matrix with the

j-th (off-)diagonal element given by

Q̃(h),∆,[i,i+j] =


1
∆

(
1− 1

∆

)(
1− j∆

h∆−j

)
, 1 ≤ i ≤ h∆, 0 ≤ j ≤ min{h∆− i, h− 1},

− 1
∆2 , 1 ≤ i ≤ h(∆− 1), h ≤ j ≤ h∆− i.

The two-scales EWMA variance with boundary-correction becomes

σ̃2
(h),t,λ = r′t,h∆Q̃(h),∆,λrt,h∆, (18)

where Q̃(h),∆,λ = h
tr(Q̃(h),∆,λ)

Q̃(h),∆,λ, with symmetric matrix Q̃(h),∆,λ ∈ Rh∆×h∆ being defined by
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Figure 7: Heatmaps of the quadratic-form matrices Q for different EWMA variance estimators of the form (3).
For this illustration, we set h = 10, ∆ = 10 and λ = 0.96. The pixels correspond to the entries of Q and
reflect the weights of cross-products rt−xrt−y. The magnitude of a weight is indicated by the color scale. The
upper plots show the standard estimator based on non-overlapping h-day returns (left; Eq. (5)) and that based
on overlapping h-day returns (right; Eq. (14)). The lower plots show subsampling-based post-average EWMA
variance estimators. The left plot corresponds to the two-scales variance (16) and the right to the boundary
corrected version (18).

Q̃(h),∆,λ = Ψ−Ξ, where Ψ,Ξ ∈ Rh∆×h∆ are symmetric matrices with entries

Ψ[i,i+j] =


(h−j)(1−λ

1
h )

1−λ
h∆−j
h

λ
h∆−i
h , 1 ≤ i ≤ h∆, 0 ≤ j ≤ min{h∆− i, h− 1},

0 , 1 ≤ i ≤ h(∆− 1), h ≤ j ≤ h∆− i,

and, for 1 ≤ i ≤ h∆, 0 ≤ j ≤ h∆− i,

Ξ[i,i+j] = λ
2(h∆−i−j)

h
+δ (1− λ)2(1− λ 2

h )
[
(h− k)(1− λ2(∆−δ)) + kλ(1− λ2(∆−δ−1))

]
(1− λ∆)2(1− λ2)(1− λ 2(h∆−j)

h )
,

with δ = b j
h
c, k = j − hb j

h
c = j − hδ and λ ∈ (0, 1). The heatmap of the weighting scheme

for the two-scales EWMA variance estimator with boundary-correction (18), associated with the
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Figure 8: Time series of subsampling-based post-average EWMA variance estimates with boundary correction
(18), σ̃2

(h),t,λ, for simulated daily return series from GARCH(1,1) process (12). The plot on the left shows the

estimates (σ̃2
(10),10t+τ,λ)t∈Z, for 1 ≤ τ ≤ 10. The right plot shows the series (σ̃2

(10),t,λ)t∈Z. Both plots are based

on bi-weekly (h = 10) returns and estimation window ∆ = 100.

quadratic-form matrix Q̃(h),∆,λ, is depicted in the lower right of Figure 7.

If we apply the subsampling-based post-average EWMA variance estimator with boundary

correction (18) to the same simulated GARCH(1,1) series used in Figure 4, we obtain the series

of variance estimators plotted in Figure 8. The right panel in Figure 8 clearly shows the absence

of spurious seasonality as compared to the right panel in Figure 4. The ten different series of

variance estimates (left in Figure 8), where assessment and sampling frequencies are in sync and

equal to the aggregation horizon, h, turn out to be much more stable; and long-memory effects

in the order statistics, associated with h-day periods, are no longer present.

Note that the autocovariances for the daily subsampling-based post-average EWMA variance

estimates (with boundary correction) can again be obtained from Corollary 2. The corresponding

ACF of the estimated variances is shown in Figure 9. The data generating process and the

combinations of aggregation horizons, h, and estimation window length, ∆, are the same, as in

Figure 5. The periodicity in the ACF has been eliminated, and the functional form of the ACF

seems reasonable for an EWMA type estimator of the variance.

In Figure 10 we repeat the DJIA analysis (Section 2) using the boundary-corrected two-scales

variance estimates (18) instead. The construction of the plot is exactly as in Figure 2. We see

that the problem of spurious seasonality is no longer present and that the ten different variance

series, shown on the left in Figure 10, do no longer slowly change their position.
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Figure 9: The ACF of subsampling-based post-average EWMA variances with boundary correction (18), for daily
returns from GARCH(1,1) process (12). For the left plot we use a fixed number of daily returns to derive the
EWMA variances. The right plot depicts the ACF of EWMA variances based on bi-weekly (h = 10) returns and
estimation windows ∆ = 25, 50, 100.
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Figure 10: Estimated boundary-corrected two-scales EWMA variances of the Dow Jones Industrial Average
(DJIA) based on ten-day log-returns with a window length of 100 bi-weekly returns and an EWMA parameter
of λ = 0.96. The first (last) estimates in both graphs are for 01-Jan-2010 (for 28-Feb-2018). The graph on the
left shows at the top ten series of bi-weekly variance estimates, each corresponding to a specific weekday and
start date, and the one on the right the daily series of bi-weekly variance estimates. The corresponding ten-day
log-returns are plotted at the bottom of both graphs.

6 Properties of the Variance Estimators

Apart from the presence or absence of spurious seasonality, properties such as bias, variance and

mean-squared error (MSE) of variance estimators are typically of interest. Another concern is

the question whether or not the volatility dynamics are captured in an adequate fashion (Engle

and Patton 2001). This is reflected by the responsiveness of variance estimators with respect to

shocks. Both issues are addressed next.

22



0 50 100 150 200 250
-0.45

 -0.4

-0.35

 -0.3

-0.25

 -0.2

non-overlap
overlap
two-scales
two-scales corrected

0 50 100 150 200 250
15

20

25

30

35
non-overlap
overlap
two-scales
two-scales corrected

0 50 100 150 200 250
15

20

25

30

35
non-overlap
overlap
two-scales
two-scales corrected

0 5 10 15 20
-140

-120

-100

 -80

 -60

 -40

 -20

   0

non-overlap
overlap
two-scales
two-scales corrected

0 5 10 15 20
 5000

10000

15000

20000

25000

30000

35000

40000
non-overlap
overlap
two-scales
two-scales corrected

0 5 10 15 20
    0

10000

20000

30000

40000

50000
non-overlap
overlap
two-scales
two-scales corrected

Figure 11: Bias, variance and mean squared error (MSE) of EWMA variance estimators (5), (14), (16), and (18).
For the series of daily returns, (rt)t∈Z, GARCH(1,1) process (12) is assumed. The upper (lower) panel shows
results for aggregation horizon h = 10 (h = 250) for different window sizes, ∆. The results for bias, variance and
MSE are shown in left, center and right panels, respectively.

6.1 Bias, Variance and MSE

We use the quadratic-form representation (3) for estimating the unconditional variance of a weak

white noise process that satisfies the moment conditions (8)-(11) to derive the bias, variance and

mean squared error (MSE) of the variance estimators. Denoting the unconditional variance of

process (rt)t∈Z by σ2 = Var(rt), the bias of σ2
(h),t is given by (2) as Bias(σ2

(h),t) = σ2(tr(Q)− h).

From Corollary 2 we obtain

Var(σ2
(h),t) = γσ2

(h),t
(0) = tr

(
CΣr2�

t,h∆+`

)
+ σ4

(
tr(QQ)− q′q

)
,

with C = qq′ + 2Q2� � (1h∆1′h∆ − Ih∆) and q = diag(Q) = (Q� Ih∆)1h∆.

In the following, we assume (rt)t∈Z follows the GARCH(1,1) process (12). As estimators for

the variance we analyze the different EWMA variance estimators σ2
(h),t,λ (non-overlapping h-

day returns, (5)), σ̌2
(h),t,λ (overlapping h-day returns, (14)), σ̄2

(h),t,λ (two-scales, (16)), and σ̃2
(h),t,λ

(corrected two-scales, (18)). The top panel in Figure 11 shows the bias, variance and MSE for

h = 10 and window sizes, ∆, ranging from 25 to 250. For a low aggregation horizon (h = 10)

all estimators have a similar bias. This is in line with the findings of Bod et al. (2002). With

respect to variance and MSE, the three estimators based on overlapping returns produce smaller

values. The results differ, however, when the aggregation level increases to h = 250 (bottom

panel in Figure 11). The standard overlapping estimator, σ̌2
(h),t, and the two-scales estimator,

σ̄2
(h),t, produce the highest absolute bias. In terms of the MSE, the corrected two-scales estimator
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Figure 12: Values of the diagonal elements of the quadratic-form matrices for variance estimators of the form
(3), r′t,h∆Qrt,h∆. The horizontal axis indicates the diagonal position in matrix Q. The diagonal entries reflect

the weights assigned to the squared daily returns, r2
t−x. The left plot shows the entries for variance estimators

(4), (13), (15), and (17); and the one on the right for EWMA variance estimators (5), (14), (16), and (18).

performs best.

6.2 Responsiveness to Shocks

Especially the EWMA variance estimator, which is not only used for estimating the unconditional

but also the conditional variance, turns out to be more responsive to recent shocks. To illustrate

and compare the responsiveness of the estimators we focus on the last 100 diagonal elements

of the quadratic-form matrices Q. These elements correspond to the weights the respective

variance estimators assign to the squared daily returns r2
t , r

2
t−1, . . . , r

2
t−99. The left (right) graph

in Figure 12 plots the weights of the different sample (EWMA) variance estimators. As becomes

evident, the corrected two-scales estimator does not suffer from the boundary issue as do the

standard two-scales estimator and the standard variance estimators based on overlapping returns.

Furthermore, in the EWMA case, the corrected two-scales estimator allocates the weights more

smoothly to past squared shocks than the estimators based on non-overlapping returns.

In summary, the corrected two-scales estimator does not suffer from spurious seasonality and

dominates other overlapping-return estimators in terms of bias, variance and MSE as well as the

responsiveness with respect to recent shocks. A shortcoming of the corrected two-scales estimator

is the fact that, in contrast to the other estimators discussed, it cannot be directly expressed as

an estimator based on (non-)overlapping h-day returns. But, as the other estimators, it has a

quadratic-form representation in terms of the daily return vector rt,h∆, i.e., r′t,h∆Qrt,h∆ (3).
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7 Concluding Remarks

We have investigated the phenomenon of spurious seasonality in sequentially estimated variances.

It arises when the assessment frequency is higher than the sampling frequency of the (non-

overlapping) return data used for estimation. The phenomenon, which, to our knowledge, has

not yet been addressed in the literature, is attributable to an implicit overlap in the return data

used for estimation. To provide a better understanding of this phenomenon, we have analyzed the

properties of series of variance estimates in terms of their theoretical autocorrelation functions,

considering a large class of data generating processes and various alternative variance estimators.

We have shown ways how to overcome the problem of spurious seasonality, introducing an

EWMA-based estimator and a boundary correction for the two-scales estimator of Zhang et al.

(2005).

In our analysis, we have focused exclusively on variance estimation. However, the phe-

nomenon of spurious seasonality also translates directly to other risk measures, such as value-at-

risk or expected shortfall, which are widely used in order to determine the capital requirements

of financial institutions. As a consequence, capital charges based on such risk estimates will be

subject to spurious seasonality. Risk managers and regulators need to be aware of that phe-

nomenon and, more importantly, understand it in order to establish sound risk management

practices. Our findings also provide an explanation for the variation in daily GARCH-parameter

estimates derived from different non-overlapping monthly samples reported in Hedegaard and

Hodrick (2016). Finally, although we have simplified our discussion by focussing on a daily data

frequency, it should be understood that spurious seasonality also arises with other frequencies,

such as in (ultra-)high-frequency realized-volatility analysis.
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A Proofs

A.1 Proof of Corollary 1

Assume for the daily returns, (rt)t, a Gaussian white noise process (Example 1) with E(rt) = 0

and variances Var(rt) = σ2. Then E(rt,h∆+`) = 0(h∆+`×1) and E(rt,h∆+`r
′
t,h∆+`) = σ2Ih∆+`, so

that, due to the independence, the joint distribution of the vector rt,h∆+` is a multivariate normal

distribution with zero mean vector and variance-covariance matrix σ2Ih∆+`. Using Theorem 1

it follows immediately

Cov(σ2
(h),t, σ

2
(h),t−`) = 2 tr(KQK ′σ2Ih∆+`LQL

′σ2Ih∆+`) = 2σ4 tr(KQK ′LQL′).

A.2 Proof of Theorem 2

Cov(X ′AX,X ′BX) = E(X ′AXX ′BX)− E(X ′AX)E(X ′BX)

=
n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

aijbklE(xixjxkxl)− tr(E(X ′AX))tr(E(X ′BX))

=
n∑
i=1

n∑
j=1

aiibjjE(x2
ix

2
j) +

n∑
i=1

n∑
j=1,j 6=i

(aijbij + aijbji)E(x2
ix

2
j)− E(tr(X ′AX))E(tr(X ′BX))

=
n∑
i=1

n∑
j=1

(aiibjj + 1{i 6=j}2aijbij)E(x2
ix

2
j)− E(tr(X ′AX))E(tr(X ′BX))

= E(X2�′CX2�)− E(tr(AXX ′))E(tr(BXX ′))

= tr(CE(X2�X2�′))− tr(AE(XX ′))tr(BE(XX ′))

= tr(C(ΣX2� + µX2�µ′X2�))− tr(AΣX)tr(BΣX)

= tr(CΣX2�) + µ′X2�CµX2� − tr(AΣX)tr(BΣX)

A.3 Proof of Corollary 2

From Theorem 2 we get

γσ2
(h),t

(`) = tr(C(Σr2�
t,h∆+`

+ µr2�
t,h∆+`

µ′
r2�
t,h∆+`

))− tr(KQK ′Σrt,h∆+`
)tr(LQL′Σrt,h∆+`

),

with C = ab′ + 2(KQK ′) � (LQL′) � (1h∆+`1
′
h∆+` − Ih∆+`), where a = diag(KQK ′) and

b = diag(LQL′). By assumption (rt)t∈Z follows a weak white noise process (Definition 1) with
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zero mean, which directly implies

µr2�
t,h∆+`

= E(r2�
t,h∆+`) = Var(rt)1h∆+` = σ21h∆+`

and

Σrt,h∆+`
= E(rt,h∆+`r

′
t,h∆+`) = Var(rt)Ih∆+` = σ2Ih∆+`.

Plugging in gives

γσ2
(h),t

(`) = tr(C(Σr2�
t,h∆+`

+ σ41h∆+`1
′
h∆+`))− σ4tr(KQK ′)tr(LQL′)

= tr
(
CΣr2�

t,h∆+`

)
+ σ4

(
1′h∆+`C1h∆+` − tr(Q)2

)
.

Furthermore, it holds with A := KQK ′ and B := LQL′

1′h∆+`C1h∆+` = 1′h∆+`(ab
′ + 2A�B � (1h∆+`1

′
h∆+` − Ih∆+`))1h∆+`

= 1′h∆+`a︸ ︷︷ ︸
=tr(A)

b′1h∆+`︸ ︷︷ ︸
=tr(B)

+21′h∆+`(A�B � 1h∆+`1
′
h∆+`)1h∆+` − 21′h∆+`(A�B � Ih∆+`)1h∆+`

= tr(Q)2 + 21′h∆+`(A�B)1h∆+` − 2a′b

= tr(Q)2 + 2tr(AB)− 2a′b

= tr(Q)2 + 2tr(KQK ′LQL′)− 2a′b.

Implying

γσ2
(h),t

(`) = tr
(
CΣr2�

t,h∆+`

)
+ σ4

(
tr(Q)2 + 2tr(KQK ′LQL′)− 2a′b− tr(Q)2

)
= tr

(
CΣr2�

t,h∆+`

)
+ 2σ4

(
tr(KQK ′LQL′)− a′b

)
.

A.4 GARCH(p, q) Fulfills the Conditions of Corollary 2

Let (rt)t∈Z be a GARCH(p,q) as defined in Example 2. We further assume that the first four

moments of rt exist and are finite.16

It is well known that GARCH processes are weak white noise process (Definition 1), so it

remains to show that the moment conditions (8)-(11) of Theorem 2 are satisfied. The first

moment condition (8) is obviously fulfilled for the zero-mean process (rt)t∈Z.

16 Conditions for the existence of moments can be found in He and Teräsvirta (1999b) and Bollerslev (1986)
for the GARCH(1,1) model and for the GARCH(p,q) model in Ling and McAleer (2002a). The functional form
of the moments are given in He and Teräsvirta (1999a) and Karanasos (1999).
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Let Iτ := {rs : s ≤ τ}. W.l.o.g. assume t1 < t2 < t3 < t4, then it holds

E(rt1rt2rt3rt4) = E(E(rt1rt2rt3rt4 |It4−1)) = E(rt1rt2rt3σt4E(εt4|It4−1)) = 0,

which shows that moment condition (9) holds for GARCH(p,q) processes with symmetric inno-

vation distributions and existing and finite fourth moments. If t1 < t2, we get

E(r3
t1
rt2) = E(E(r3

t1
rt2|It2−1)) = E(r3

t1
σt2E(εt2|It2−1)) = 0

and if t1 > t2 it follows

E(r3
t1
rt2) = E(E(r3

t1
rt2|It1−1)) = E(rt2σ

3
t1
E(ε3t1 |It1−1)) = 0,

which shows that moment condition (11) holds for GARCH(p,q) processes with symmetric in-

novation distributions and existing and finite fourth moments. Let t1 < max{t2, t3} and w.l.o.g.

t3 > t2 then it follows

E(r2
t1
rt2rt3) = E(E(r2

t1
rt2rt3|It3−1)) = E(r2

t1
rt2σt3E(εt3|It3−1)) = 0.

If t1 > max{t2, t3}, E(ε2t ) = σ2 and w.l.o.g. t1 = t, t2 = t− 1 and t3 = t− 2 it holds

E(r2
t1
rt2rt3) = E(r2

t rt−1rt−2) = E(E(r2
t rt−1rt−2|It−1)) = E(rt−1rt−2E(σ2

t ε
2
t |It−1))

= E(rt−1rt−2σ
2
tE(ε2t )) = σ2E(rt−1rt−2(α0 +

q∑
i=1

αir
2
t−i +

p∑
j=1

βjσ
2
t−j))

= σ2α0E(rt−1rt−2) + σ2

p∑
j=1

βjE(rt−1rt−2σ
2
t−j) + σ2α1E(r3

t−1rt−2) + σ2

q∑
i=2

αiE(rt−1rt−2r
2
t−i)

= 0,

which shows that moment condition (10) holds for GARCH(p,q) processes with symmetric in-

novation distributions and existing and finite fourth moments.
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B Additional Results and Figures

B.1 Gaussian White Noise Process with the Sample Variance

Figure 13 and Figure 14 in this section of the appendix are analogously to Figure 4 and Figure 5

but with GARCH(1,1) (12) being replaced by the Gaussian white noise as data generating

process and the EWMA variance (5) being being substituted by the sample variance (4).
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Figure 13: Time series of sample variance estimates (4), σ2
(h),t, for simulated daily return series from the Gaussian

white noise process with variance σ2 = 1. The plot on the left shows the estimates (σ2
(10),10t+τ )t∈Z, for 1 ≤ τ ≤ 10.

The right plot shows the series (σ2
(10),t)t∈Z. Both plots are based on bi-weekly (h = 10) returns and estimation

window ∆ = 100.
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Figure 14: The ACF of sample variances (4), σ2
(h),t, for daily returns from the Gaussian white noise process with

σ2 = 1. For the left plot we use a fixed number of daily returns to derive the sample variances. The right plot
depicts the ACF of sample variances based on bi-weekly (h = 10) returns and estimation windows ∆ = 25, 50, 100.
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B.2 The Functional Form and Amplitude of the Periodic Spurious

Seasonality in the ACF

The autocovariance function of the quadratic-form variance estimator when the daily log-return

process, (rt)t∈Z, is a weak white noise process satisfying the moment conditions (8)-(11) is given

in Corollary 2 for ` ≥ 0 by

γσ2
(h),t

(`) = tr
(
CΣr2�

t,h∆+`

)
+ 2σ4

(
tr(KQK ′LQL′)− a′b

)
,

with C = ab′ + 2(KQK ′) � (LQL′) � (1h∆+`1
′
h∆+` − Ih∆+`), where a = diag(KQK ′) and

b = diag(LQL′). The expression is nicely compact, but lacks intuition. It is not obvious, where

the spurious seasonality is exactly coming from and how the amplitude of the periodic spurious

seasonality in the ACF depends on the variance estimator and the data generating process. To

provide more insight, we re-write the autocovariance as a sum of three components

γσ2
(h),t

(`) = s1(Q) + s2(Q) + s3(Q),

with

s1(Q) := b′Σr2�
t,h∆+`

a− 2(σ4 + γr2
t
(0))a′b,

s2(Q) := 2tr
(
((KQK ′)� (LQL′))Σr2�

t,h∆+`

)
,

s3(Q) := 2σ41′h∆+`((KQK
′)� (LQL′))1h∆+`.

The three terms depend on the variance estimator, defining Q, and the data generating process,

which impacts σ4, γr2
t
(0) and Σr2�

t,h∆+`
. In the following we consider again the Gaussian white

noise process with σ2 = 1 and GARCH(1,1) process (12). As variance estimators, we study the

sample variance and the EWMA variance based on non-overlapping h-day returns with h = 10.

The window length is set to ∆ = 100.

Figure 15 shows the ACF of the estimated variances, ρσ2
(h),t

(`), and the three components

si(ρσ2
(h),t

(`)) = si(Q(h),∆)/γσ2
(h),t

(0). Note that the components add up to the ACF, i.e., ρσ2
(h),t

(`) =∑3
i=1 si(ρσ2

(h),t
(`)). The two top rows correspond to the Gaussian white noise process with the

sample variance in the first row and the EWMA variance in the second row. Accordingly, the

third and fourth row show the results for the GARCH(1,1) process and the respective variance

estimators. One can see that the first component s1(ρσ2
(h),t

(`)) is not contributing to the periodic

spurious seasonality effect and the functional form depends on the variance estimator and the

data generating process. The second component, s2(ρσ2
(h),t

(`)), is not periodic for the Gaussian

white noise process and periodic for the GARCH(1,1) process. This is due to the fact that

Σr2�
t,h∆+`

is diagonal for Gaussian white noise but not for GARCH(1,1) processes since squared
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Figure 15: The ACF, its components s1(·), s2(·), s3(·), and peak-to-peak amplitudes, a(·), of sample variances
(first and third row), σ2

(h),t, and EWMA variances (second and fourth row), σ2
(h),t,λ, for different lags `. The

time-scale on the horizontal axis represents lags of ` days. In the first two rows, for the daily returns the Gaussian
white noise process with σ2 = 1 is assumed and in the third and fourth row GARCH(1,1) process (12). All plots
are based on bi-weekly (h = 10) returns and estimation window ∆ = 100.

observations are autocorrelated. In case of the sample variance, the peak-to-peak amplitude in

s2(ρσ2
(h),t

(`)) is decreasing more slowly than for the EWMA variance estimator. The third term,

s3(ρσ2
(h),t

(`)), is periodic in all four cases and the functional form of the amplitude is comparable

to those of the second component. The fifth column shows the contribution of the second and

third component to the peak-to-peak amplitudes, denoted by a(ρσ2
(h),t

(`)).17 One can see that

the peak-to-peak amplitude of the sample variance is decreasing in `, and it is larger for the

Gaussian white noise process than for the GARCH(1,1) process. The peak-to-peak amplitudes

for the EWMA variances are comparable to those of the sample variance for small values of `,

but the amplitudes are decreasing much faster in `.

The crucial term in both periodic components, s2(Q) and s3(Q), is (KQK ′)� (LQL′). The

block-structure of Q(h),∆,λ and Q(h),∆ (see, for example, the top-left plot in Figure 7) and the

fact that KQK ′ = blkDiag(0(`×`),Q) and LQL′ = blkDiag(Q,0(`×`)) have a block-diagonal

structure reveal how the periodicity of length h is generated, when different lags, `, are considered

and the Hadamard product of the matrices KQK ′ and LQL′ is formed.

17 The peak-to-peak amplitudes have been approximated by fitting linear functions (for the sample variance)
and exponential functions (for the EWMA variance) through the peaks and taking the pointwise differences
between the fitted functions. The fitted curves are shown in blue and red in the plots of s2(·) and s3(·).
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B.3 Comparison of EWMA Variance Estimators

In this section of the appendix we present plots for the four different EWMA variance estimators:

σ2
(h),t,λ (non-overlapping h-day returns, (5)), σ̌2

(h),t,λ (overlapping h-day returns, (14)), σ̄2
(h),t,λ

(two-scales, (16)), and σ̃2
(h),t,λ (corrected two-scales, (18)). In Figure 16, time series of variance

estimates for simulated data from GARCH(1,1) process (12) are shown. The most left and right

1200 1400 1600 1800 2000
0

5

10

15

20

25

30

1200 1400 1600 1800 2000
0

5

10

15

20

25

30

1200 1400 1600 1800 2000
0

5

10

15

20

25

30

1200 1400 1600 1800 2000
0

5

10

15

20

25

30

Figure 16: Time series of EWMA variance estimates (5), (14), (16), (18) for simulated daily return series from
GARCH(1,1) process (12). The plots are based on bi-weekly (h = 10) returns and estimation window ∆ = 100.

plots, for σ2
(h),t,λ and σ̃2

(h),t,λ, have already been shown on the right of Figure 4 and Figure 8,

respectively. In Figure 17, the ACF for all four EWMA variances is plotted. Again, the most

left and right plot, for σ2
(h),t,λ and σ̃2

(h),t,λ, have already been shown on the right of Figure 5 and

Figure 9, respectively.
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Figure 17: The ACF of EWMA variances (5), (14), (16), (18), for daily returns from GARCH(1,1) process (12).
The ACF of EWMA variances is based on bi-weekly (h = 10) returns and estimation windows ∆ = 25, 50, 100.
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