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∗We thank Nicole Bäuerle, Francesca Biagini, Arthur Charpentier, Paul Embrechts, Christoph Hartz,
and Sandra Paterlini as well as the participants of the Actuarial and Financial Mathematics Conference
in 2008 and the International Workshop on Rare Event Simulation in 2008 for their helpful comments
and discussions. We also thank two anonymous referees for their constructive comments which helped us
to greatly improve the paper.

1



Abstract

We show that the use of conventional correlations for modeling dependencies may
lead to a counterintuitive behavior of risk measures, such as Value–at–Risk and
Expected Shortfall, in simulation–based assessments of the risk of very rare events.
The effect can be avoided in the case of Expected Shortfall by an appropriate design
of the simulation setup. This does not hold, however, for the widely used Value–at-
Risk measure.

Consequently, the goal of decreasing minimum capital requirements by specifying
less–than–perfect correlations, as suggested by the New Basel Capital Accord (Basel
II ), may not be achieved.

Keywords: Operational risk, latent variables, mixture models, correlation,

rare events
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1 Introduction

Since the initiation of the New Basel Capital Accord (Basel II ) in 1999, when opera-

tional risk was introduced to the regulatory landscape, the attention to this risk type

has risen substantially. The Basel Committee on Banking Supervision (Basel Committee,

2006) defines operational risk as “risk of loss resulting from inadequate or failed inter-

nal processes, people and systems or from external events.” The fact that events like

bookkeeping errors and terrorist attacks are covered by this characterization illustrates

the broad range of risks relative to credit or market risk. Taking this heterogeneity of

loss events into account, the Basel Committee categorizes losses into seven event types

and eight business lines. Banks are supposed to calculate risk measures for each of these

7 × 8 = 56 combinations, such as “Internal Fraud” in “Trading and Sales” or “Damage

to Physical Assets” in “Commercial Banking”.

The risk measure specified by the Basel Committee is the Unexpected Loss at a confidence

level of 99.9%. Generally speaking, this refers to the 99.9% quantile of the loss distribution

(possibly reduced by the Expected Loss, that is, the mean of the distribution), commonly

known as the 99.9% Value–at–Risk (VaR). It measures the maximum loss that will not

be exceeded with the specified confidence level and is a widely used risk measure since

the 1990s. The total required risk capital under the Advanced Measurement Approaches

(AMA) is obtained by summing over all 56 event–type/business–line VaRs, a strategy

implicitly expecting the joint occurrence of all loss types involved or, in other words, as-

suming perfect positive correlation between all loss processes. To allow for non–perfect

correlations, the Basel Committee permits a bank “. . . to use internally determined cor-

relations [...] provided it can demonstrate to the satisfaction of the national supervisor

that its systems for determining correlations are sound, implemented with integrity, and

take into account the uncertainty surrounding any such correlation estimates (particularly

in periods of stress).” (Basel Committee, 2006, p. 148). Dropping the highly unrealis-

tic assumption of perfect dependence (i.e., summing the Unexpected Losses of all cells)

and relying on realistic correlation estimates should decrease the calculated risk capital.

Therefore, banks should have a strong interest in developing and establishing adequate

assessment approaches. This expected decrease in estimated risk capital due to less than

perfect correlations of the loss processes is the focus here. Specifically, we investigate

whether a general rule can be established about risk–capital requirements and less than

perfect correlations. Second, we analyze how the model specification affects such a rule.

The Loss Distribution Approach (LDA) is by far the most prominent among the AMA,

relying on techniques well–known from actuarial applications (Klugman et al., 2004). In

its standard form, loss distributions are modeled at the event–type/busniness–line level,
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and the resulting VaR figures are added up. However, dependencies can be introduced

between cells, typically by assuming dependent frequencies of occurrence. As an exam-

ple of such dependence between frequencies, one could think of storm losses (i.e., event

type “Damage to Physical Assets”) which typically occur clustered during certain seasons

of the year. At the same time, these damages can cause events of the type “Business

Disruption and System Failures”, but also affect several business lines located closely to

each other. In this paper, we focus on rare–event losses—such as natural catastrophes

or terrorist attacks, rather than “everyday” losses such as common bookkeeping errors—

and consider risk–generating processes common in credit–risk analysis (see, e.g., Frey and

McNeil, 2002, 2003). However, we assume broader parameter ranges than those typically

adopted. We confine ourselves to analyzing the frequency part of operational losses to

check for the impact of dependent occurrences and disregard the severity dimension by

assuming fixed severities. Therefore, in our notion, “risk” is represented by the number

of event occurrences.

The main finding of our paper consists of the observation that the assumption of a less

than perfect correlation between loss processes does not necessarily imply a decrease in

rsk capital. Specifically, for all distributional assumptions considered, there may arise

situations where a decrease in correlation leads to an increase in risk capital estimates,

thus reversing the desired effect.

Since the work of Artzner et al. (1999), it is well–known that VaR is not a coherent risk

measure due to the lack of subadditivity. In the operational risk context, this means that

the joint risk—if measured by VaR—of two event–type/business–line cells may exceed the

sum of the individual risks measured for the two single cells. The Expected Shortfall (ES)

measure, which does fulfil the subadditivity criterion, is typically recommended as an al-

ternative and therefore also considered within the scope of our simulation study. However,

it should be pointed out that the subadditivity property is not being analyzed here. At

no point in our simulations, risk measures are added up; they are rather calculated based

on a sum of losses, generated under different correlation assumptions.

The paper is organized as follows. Section 2 introduces the general modeling framework

as well as our concrete approach to including dependencies via latent variables. The

setup and the results of the simulations are presented in Section 3. Section 4 discusses

consequences of our findings and Section 5 concludes.
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2 Modeling Dependent Operational Losses

In the operational risk modeling framework, the total aggregate loss, L, is computed by

L =
J∑

j=1

Lj =
J∑

j=1

Nj∑
i=1

Xi,j , (1)

where J denotes the number of event–type/business–line combinations (with J = 56 us-

ing first–level definitions), and Lj refers to the loss associated with cell j, which is simply

given by the sum of the severities of the individual losses Xij with i = 1, . . . , Nj. There

is a number of ways of introducing dependencies in (1).

Dependencies among frequencies and/or severities can exist within or between cells. The

latter is an important focus of research on operational risk. The reason is that the standard

LDA assumes that for a given cell j, quantities X1, X2, . . . , XN , and N are independent

and that the Xi are independent and identically distributed random variables.

Analogously, loss dependencies between cells can be introduced by allowing for dependen-

cies among frequencies Nj, j = 1, . . . , J , among severities, Xj, or by directly specifying

dependencies among aggregate cell losses, Lj. Pfeifer and Nešlehová (2004) and Chavez-

Demoulin et al. (2006) construct dependent point processes for the frequency variable,

N . Aue and Kalkbrener (2006) model frequency dependence via a Gaussian copula.1 De-

pendent frequencies can also be obtained using common shock models, as, for example,

in Lindskog and McNeil (2003). A crucial problem when working with dependent count

data is that the dependence structure is no longer solely characterized by the copula. This

follows from the non–uniqueness of copulas for discrete data. Though we can simulate

dependent frequencies using copulas, drawing inference for the copula parameter from

multivariate count data is not at all straightforward (see Genest and Nešlehová, 2007).

Specifying dependence among severities has been favored, for example, by Chapelle et al.

(2004) and Reshetar (2008). Here, a conceptual problem arises, as dependent severities

contradict the assumptions of the standard LDA (see, for example, Frachot et al., 2004,

on this issue). The assumption that severities in cells i and ` are correlated (i.e., Xi,j and

X`,k are correlated for all i = 1, . . . , Nj and ` = 1, . . . , Nk) imposes correlation between

severities within cells. This contradicts the standard LDA assumption.

In view of the difficulties of “bottom–up” approaches which model in terms of individ-

ual loss frequencies and severities, dependence is often introduced directly at the level

of aggregate cell losses. Examples are Nyström and Skoglund (2002), Di Clemente and

Romano (2003) and Dalla Valle et al. (2008).

1See Bee (2005) for an analysis of the Gaussian copula’s effect on risk capital estimates.
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In this study, to not divert from the focus and to keep the setup as simple as possible, we

concentrate exclusively on frequency dependence. That is, we do not explicitly model loss

severities, and thereby, adhere to the standard LDA.2 By doing so, our analysis reduces

to modeling the number of loss occurrences. We consider the generic loss variable

L =
n∑

i=1

Yi ,

composed of n individual loss processes, Yi, i = 1, . . . , n. Loss Yi is assumed to be either

a Bernoulli (0–1) random variable indicating an event occurrence or Poisson distributed,

counting the number of event occurrences for process i.

This setup allows to introduce loss dependence in a variety of ways. For example, n = 56

could represent the number of business–line/event–type combinations, so that L denotes

the total aggregate loss of an institution. On the other hand, n could be the number of

technical components for one business–line/event–type combination. Then, L represents

the losses for one of the 56 cells, assuming within–cell dependencies and, thus, leaving

the standard LDA. Intermediate setups, where n denotes the number of potential failures

(such as technical components or transactions) for several cells, are also possible. What-

ever the interpretation of n, risk capital will always be estimated from the distribution

of L. In contrast to Embrechts and Puccetti (2008), who consider the aggregation of

risk capital estimates, we assume that risk capital is always estimated from the joint loss

distribution, implying that losses in different cells are modeled jointly. If n = 56 refers to

all cells, this amounts to the “top–down approach” of Embrechts and Puccetti (2008).

Except in special cases, the cumulative distribution function of L, denoted by FL, is not

available in closed form. Therefore, risk capital estimates based on quantiles or expected

values cannot be derived analytically but rather have to be obtained via Monte–Carlo

simulations. To do so, we simulate Y –processes and induce dependencies between Yi and

Yj, i 6= j, by introducing latent variables.

2.1 Latent–variable models

The idea common to all latent–variable specifications is that there exists a second layer

of—possibly observable—latent variables which drive the discrete counting process for

the observed loss occurrences. Formally, a latent–variable model (LVM) can be defined

as follows, cf. McNeil et al. (2005).

2Dependent severities could easily be handled by introducing an additional simulation step, drawing
a loss amount per occurrence. An obvious candidate for a severity distribution is, for example, the
multivariate lognormal distribution with the correlation matrix reflecting the dependence structure among
severities.

6



Definition (Latent–variable Model) Let X = (X1, . . . , Xn)′ be a random vector and

D ∈ Rn×m a deterministic matrix with elements dij. Suppose that

Si = j ⇔ dij < Xi < di,j+1 , i ∈ {1, . . . , n}, j ∈ {0, . . . , m},

where di0 = −∞, di,m+1 = ∞. Then, (X, D) is a latent–variable model for the state vector

S = (S1, . . . , Sm)′, where Xi are the latent variables and dij the thresholds of the LVM.

For our purposes, we introduce variable Yi, defined by

Yi = 1 ⇔ Si = 0 and Yi = 0 ⇔ Si > 0 ,

to indicate the “occurrence” and “non–occurrence” of an event, i.e., we only distinguish

between these two states. The probability of occurrence for process i, πi, is defined by

Pr[Yi = 1] = Pr[Xi ≤ di1] = πi .

In the credit–risk literature, Yi = 1 indicates a “default” of counterparty i, meaning that

obligor i cannot make its payments. In structural credit–risk models, the latent variable

is interpreted as the obligor’s assets. If their value falls below some threshold (the default

boundary) the obligor defaults. However, as pointed out by Duffie et al. (2009), credit risk

portfolio losses are not driven by one common factor, and neglecting unobserved latent

variables may lead to an underestimation of risk.

This concept of latent variables can be adapted to suit operational risk settings, as is

done, for example, in Peters et al. (2009). Here, the underlying variables can be inter-

preted as Key Risk Drivers (KRDs) (Nyström and Skoglund, 2002); that is, they induce

indirect dependence by driving several loss processes. The interpretation of a KRD will

typically depend on the event type (and/or business line) considered; while it may rep-

resent the predisposition for natural disasters in the “Damage to Physical Assets” event

type, a KRD for “Internal Fraud” will surely contain the quality of internal controls. This

illustrates that one cannot, in general, state whether KRDs are exogenous to the institu-

tion or whether they can be controlled by the risk manager. When modeling operational

risk, it may be reasonable to set Yi ∈ {0, 1, 2, . . .}, representing the number of loss events

(rather than the two outcomes “default” or “no default”), in which case the Poisson dis-

tribution rather than the Bernoulli distribution is appropriate. The Poisson distribution

is a natural candidate since it approximates sums of Bernoulli random variables with low

success probabilities. This property will be utilized in the mixture model representation

below; however, or findings apply both to the Bernoulli and the Poisson formulation.

We want to construct a setup in which the probability of the occurrence of an event can

depend on events in other processes, as, for example, a system breakdown in one corporate
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division may propagate to others causing a failure there. In LVMs, this is modeled

by allowing for dependencies among the latent variables, inducing dependencies among

event occurrences in an indirect fashion. Restricting ourselves to linear dependence, we

distinguish between latent correlation among the Xi and observed correlation among the

Yi. The latter is given by (see, e.g. McNeil et al., 2005, p. 344)

ρY =
Cov[Yi, Yj]√

Var[Yi] · Var[Yj]
=

E[YiYj]− πiπj√
πi(1− πi)πj(1− πj)

, (2)

where E[YiYj] = Pr[Yi = 1, Yj = 1] = Pr[Xi ≤ di1, Xj ≤ dj1] denotes the joint cumula-

tive distribution function of the latent variables associated with processes i and j. The

observed correlation, ρY , is called “default correlation” in the credit–risk literature, as

opposed to the (latent) “asset correlation”, ρX , which refers to the linear dependence

between latent variables. From (2) it follows that observed correlations depend on mar-

ginal occurrence probabilities, πi and πj, and on latent correlation, ρX , the latter entering

via E[YiYj]. Relationship (2) has been studied, for example, by Gersbach and Lipponer

(2003) and Foulcher et al. (2005).

Normal–variance mixtures are obvious and widely used candidates for the distribution of

latent variables. In normal–variance mixtures, latent variables can be written as

X = µ +
√

WZ ,

where Z ∼ N(0, Σ), W is a scalar random variable independent of Z, and µ is a constant.

An event occurs for process i if Xi ≤ di1 or

Zi ≤ di1 − µ√
W

.

2.2 Mixture models

Mixture models can arise when distributional parameters do not remain constant. It

seems plausible that, for example, in periods when tectonic plates move, the probability

of earthquakes rises, that storms are more likely to happen in one season than in others,

or that a management change in a company can affect the probability of business disrup-

tions. Therefore, in an operational–risk context, it seems to be a realistic assumption that

distributional parameters are subject to changes, i.e., that they themselves are random.

A formal definition of a special mixture model in the spirit of McNeil et al. (2005) is as

follows.

Definition (Bernoulli Mixture Model) Let Y = (Y1, . . . , Yn)′ be a random vector in

{0, 1}n and Ψ = (Ψ1, . . . , Ψp)
′, p < n, be a factor vector. Then, Y follows a Bernoulli

mixture model with factor vector Ψ if there exist functions pi : Rp → [0, 1] such that

conditional on Ψ the elements of Y are independent Bernoulli random variables with

Pr[Yi = 1|Ψ = ψ] = pi(ψ).
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It is also possible to define Y to be conditionally Poisson distributed. Then, Y is a count

variable rather than a binary variable, giving rise to a Poisson mixture model. Both

models can be transformed into each other by setting Y = I(0,∞)(Ỹ ), where I denotes the

indicator variable and Ỹ ∼ Poi(λ). The parameters are related via pi = 1−e−λi , a property

which we use to simulate from both models in a comparable way. To keep the setup simple,

we examine only exchangeable mixture models, where conditional probabilities of event

occurrence are identical, i.e., pi(ψ) = p(ψ). Defining the new random variable Q = p(Ψ),

the observed correlation between indicator variables can then be obtained from

ρY =
π2 − π2

π − π2
,

where π = E[Q] and πk = E
[
Qk

]
, the latter resulting from conditional independence.3

In fact, LVMs and Bernoulli mixture models can be viewed as two different representations

of the same underlying mechanism. The following lemma from Frey and McNeil (2003)

states the condition for such an equivalence.

Lemma 1 Let (X, D) be an LVM with n-dimensional random vector X. If X has a p-

dimensional conditional independence structure with conditioning variable Ψ, the default

indicators Yi = IXi≤di1
follow a Bernoulli mixture model with conditional event probabili-

ties pi(ψ) = Pr[Xi ≤ di1|Ψ = ψ].

The LVM (X,D), where X is a normal–variance mixture and Z is governed by a one–

factor structure, can be written as

Xi =
√

WZi , (3a)

Zi =
√

ρXΨ +
√

1− ρXεi , (3b)

where ρX is the latent correlation, εi
iid∼ N(0, 1), and Ψ ∼ N(0, 1) is the only factor and

conditioning variable. We thus obtain a conditional independence structure for X which

allows us to proceed using the equivalent mixture model representation.

Below, we do not only want to analyze the effect of correlation on risk–capital estimates for

rare events, but also to assess consequences in terms of model risk, i.e., the use of a model

which does not accurately describe the processes in place. Therefore, we compare the

impact of different distributional assumptions that are frequently adopted in the credit–

risk framework. To do this systematically, we calibrate the mixture models with the

help of latent and observed correlations. The simplest and most common LVM, serving

3Due to conditional independence, one obtains

πk = Pr[Y1 = 1, . . . , Yk = 1] = E[E[Y1 · · ·Yk|Q]] = E[E[Y1|Q] · · ·E[Yk|Q]] = E
[
Qk

]
.
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here as benchmark model, assumes multivariate normal latent variables. In this case, the

distribution of Xi in (3a) corresponds to that of Zi, implying that W = 1. Standardizing

Xi and inserting the threshold expression di = Φ−1(π), one obtains the conditional default

probability

p(ψ) = Pr[Xi ≤ di|Ψ = ψ] = Φ

(
Φ−1(π)−√ρXψ√

1− ρX

)
. (4)

In order to assess model risk, we adapt modifications suggested and analyzed in the context

of credit portfolios (cf. Frey and McNeil, 2002, 2003). The first generalization of our

benchmark model allows for tail dependence and a fat–tailed multivariate distribution for

the latent variables by assuming a multivariate Student-t distribution. In this case, ρX = 0

means that the latent variables are uncorrelated, but they are no longer independent. The

degree–of–freedom parameter of the t distribution, ν, adds flexibility and allows to control

the degree of fat–tailedness of the latent variables. The setup given in (3) remains valid,

but for Xi to have a Student-t distribution with ν degrees of freedom, the normally

distributed random variable Zi has to be multiplied by an inverse–gamma distributed

random variable; i.e., W ∼ InvGam(ν/2, ν/2). The resulting conditional occurrence–

probability is

p(ψ) = Pr[Xi ≤ di|Ψ = ψ] = Φ

(
t−1
ν (π)W−1/2 −√ρXψ√

1− ρX

)
, (5)

where t−1
ν (·) denotes the inverse of the t distribution with ν degrees of freedom.

Leaving the framework defined by (3), two additional modifications are considered. First,

we assume a Beta distribution for the mixing variable. It is a natural extension, because

the interval [0, 1] is the domain, and therefore allows us to interpret the mixing variable

as conditional probability. Moreover, it leads to an analytically tractable model. We

therefore consider a mixing variable p(ψ) = Q ∼ Beta(a, b). As the moments of a Beta

distribution can be directly calculated from the distributional parameters, a and b, we

can easily derive unconditional occurrence–probabilities4,

πk =
β(a + k, b)

β(a, b)
=

k−1∏
j=0

a + j

a + b + j
, (6)

and the observed correlation

ρY =
1

a + b + 1
.

4Here, we are making use of the representation of the Beta function, β(a, b) =
∫ 1

0
ta−1(1− t)b−1dt, in

terms of the Gamma function, Γ(α) =
∫∞
0

tα−1e−tdt, which is

β(a, b) =
Γ(a)Γ(b)
Γ(a + b)

.

Equation (6) then follows from the general recursion Γ(α + 1) = αΓ(α).
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Below, these relationships are used for model calibration.

Finally, we also consider an Archimedean copula

C(u1, . . . , ud) = φ−1(φ(u1) + . . . + φ(ud))

for the latent variables, where φ (the “generator”) refers to the the inverse of the Laplace

transform of cumulative distribution function G on R. This choice of copula, as pointed

out by Frey and McNeil (2003), is mainly motivated by its simplicity for calibration

and simulation. Furthermore, Archimedean copulas allow—in contrast to the Gaussian

copula—for tail dependence, the exact form of which depends on the form of the generator.

To simulate latent variables with an Archimedean copula, we assume a factor, Ψ, and a

sequence of uniform random variables, U1, . . . , Ud, conditionally independent given Ψ,

with

Pr[Ui ≤ u|Ψ = ψ] = exp(−ψφ(u)) , u ∈ [0, 1] .

Conditional occurrence probabilities can be calculated from

Q = p(ψ) = Pr[Ui ≤ π|Ψ = ψ] = exp(−ψφ(π)) .

In the special case of a Clayton copula, the generator takes the form φ(t) = t−θ−1 and Ψ

needs to be gamma distributed, i.e., Φ ∼ Ga(1/θ, 1). The resulting copula is characterized

by lower tail dependence.5 With this, we obtain the bivariate occurrence probability

π2 = φ−1(φ(π) + φ(π)) = (2π−θ − 1)−1/θ , θ > 0 , (7)

which is used for calibration to the benchmark model.

3 Simulation

3.1 Simulation Setups

In order to obtain risk–capital estimates, the loss distribution, FL, needs to be derived.

As this function is not available in closed form, we construct its empirical distribution

function

F̂L(l) =
1

B

B∑

b=1

I[0,l](lb)

5We thus impose tail dependence in that part of the latent variables’ distribution which is relevant
for loss event occurrences. The coefficient of lower tail dependence for the Clayton copula is given by
λL = 2−1/θ, while for the upper tail, λU = 0 holds.

11



via Monte–Carlo simulation, where lb refers to the loss from replication b and B replica-

tions are used altogether. The resulting VaR1−α value, based on these B replications, is

then given by

VaR1−α = F̂−1
L (1− α) ,

and that for ES1−α by

ES1−α =
1

B

B∑

b=1

lb I[VaR,∞](lb) .

In the benchmark model, risk capital estimates are generated as follows:

1. Set values for the observed occurrence probabilities π and latent correlations ρX

2. Simulate a (standard normally distributed) factor realization, ψ, and calculate the

conditional occurrence–probability p(ψ) from (4)

3. Conduct n Bernoulli trials, using p(ψ) as success probability, and sum up the number

of event occurrences

4. Repeat these steps B times and calculate VaR and ES for the resulting empirical

distribution.

For the distributional specifications considered, this procedure has to be modified accord-

ingly. In order to draw from a Student-t distribution for the latent variables, we fix π and

ρX to the same values as in the benchmark model. At the same time, we are free to set

a value for the degrees–of–freedom parameter ν, a smaller value implying fatter tails for

the distribution of the latent variables. In addition to drawing a factor realization from

Ψ ∼ N(0, 1), we also draw from W ∼ InvGam(ν/2, ν/2) and calculate the conditional

occurrence–probability p(ψ) from (5), which is then again used for Bernoulli/Poisson tri-

als in order to simulate loss event occurrences.

In case of a beta mixing distribution, we calculate the bivariate occurrence probability,

π2, implied by π and ρX in the benchmark model.6 Parameters a and b of the beta dis-

tribution can then be derived from π and π2 via (6). Drawing from the Beta distribution

with parameters a and b, we directly obtain the conditional occurrence–probability, p(ψ),

which is then used to conduct n Bernoulli/Poisson trials. Again, the procedure is repeated

B times, and values for VaR and ES are derived.

In case of a Clayton copula of latent variables, we first need to determine the value of

parameter θ implied by the benchmark–model values of π and ρX . In order to do so, we

again calculate the corresponding π2 and derive θ from π and π2 using (7). We then draw

6π2 denotes the value of the cumulative distribution function of a bivariate normal distribution with
correlation ρX at

(
Φ−1(π),Φ−1(π)

)
.
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factor realizations from Ψ ∼ Gam(1/θ, 1) which are used to obtain conditional occurrence

probabilities p(ψ). Given these, we again conduct n Bernoulli/Poisson trials and replicate

B times in order to derive values for VaR and ES.

3.2 Simulation Results

For each of the models discussed above we simulate event occurrences and estimate risk

capital for different levels of latent correlation, ρX . In doing this, we use the multivariate

normal LVM as benchmark model to which we calibrate the other models.

In a first simulation study, we assume n = 1, 000 loss processes, to match the setup of the

study in Frey and McNeil (2001). Specifying B = 100, 000 replications, we observe for

all models a counterintuitive behavior of the VaR values when occurrence probabilities

are low (π ≤ 0.01): Starting from perfect correlation, VaR values increase as correlations

decrease. We consider confidence levels between 95% and 99.9% and find that this effect

is more pronounced for lower confidence levels, i.e., when decreasing ρX , we observe it first

for VaR0.95, then for VaR0.99, and only for very low occurrence probabilities (π ≤ 0.0001),

VaR0.999 is also affected. An illustration of this phenomenon is given in Figure 1, which

plots the 99% VaR (on a logarithmic scale) as a function of the level of latent correlation

and occurrence probability, π.

Figure 1 somewhere here.

For π = 0.01, VaR behaves as expected: It increases in ρX over the entire range of

latent correlations. However, for lower levels of π, such as π = 0.005, VaR decreases with

increasing correlation above a certain threshold of ρX ; the lower π, the lower this threshold

value. This effect is the more pronounced, the fatter the tails of the distribution of latent

variables. This is shown in Figure 2, where an intermediate occurrence–probability of

π = 0.001 is held fixed.

Figure 2 somewhere here.

For ν = 100, VaR grows as the latent correlation increases to ρX ≈ 0.5 and decreases for

higher levels. The lower ν, the broader the range of ρX for which this peculiar behav-

ior occurs. For ν = 4, VaR values decrease over the entire range of latent correlations, ρX .

The results for Poisson mixture models are qualitatively the same, as was to be expected

from the low level of occurrence probabilities involved. For ES, using 100, 000 replications,

we obtain ambiguous results. Figure 3 shows a behavior which corresponds to intuition,

i.e., ES increases with correlation.

Figure 3 somewhere here.
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However, setting a different seed in the simulation can result in ES–increases as correla-

tion decreases when the occurrence probability is very low (π ≤ 1.0e-005).

The results presented so far are based on 100,000 replications. In order to assess the uncer-

tainty in risk capital estimates, we modify the simulation setup and calculate several risk

capital estimates for each combination of ρX and π, increasing the number of replications

up to B = 10, 000, 000. In order to avoid predominance of risk capital estimates of zero,

we now set the number of loss processes to n = 100, 000 and concentrate on a confidence

level of 99.9% (which is the relevant level in operational–risk applications). Due to the

substantial computational burden of this task, we hold the occurrence probability fixed at

π = 1.0e-005. To assess convergence and reliability of risk capital estimates, we conduct

250 Monte–Carlo simulations for each ρX . Figures 4 to 9 compare boxplots of these 250

risk capital estimates, where we replace the median by the mean over the 250 estimates

for assessing convergence.

Figures 4 to 9 somewhere here.

Figure 4 confirms the findings of our first simulations: Above a certain level of latent cor-

relation (ρX ≈ 0.5), VaR estimates may increase with decreasing latent correlation. The

dispersion of the 250 risk capital figures is the highest for medium levels of correlation.

As was to be expected, it decreases with an increasing number of replications; however,

VaR still increases with decreasing correlations in the upper region of ρX . In view of these

observations, we conclude that this counterintuitive behavior is not due to convergence

issues and cannot be eliminated by increasing the number of replications. It appears that

B = 1, 000, 000 replications are sufficient to obtain reliable VaR figures. Therefore, we

restrict our attention to this B–value when analyzing VaR behavior in the following.

Figure 5 shows the ES figures resulting from the very same simulations. It becomes evi-

dent that the risk–capital estimates may, just like in the VaR case, rise with decreasing

correlations; but in the case of ES figures, this is not true for their mean. Therefore,

increasing the number of replications to Bmax = 10, 000, 000 substantially reduces the

occurrence frequency of ES–increases caused by correlation declines. The restriction to

Bmax is due to computational limitations.

Figure 6 illustrates that the results from a Poisson mixture model are qualitatively identi-

cal to those of the Bernoulli version—except for ES values at very high correlation levels.

This is due to the low occurrence probability, making multiple loss occurrences extremely

rare. The results from the previous study regarding the fat–tailedness of the latent vari-

ables’ distribution are confirmed by Figure 7. Just as before, VaR figures decrease in ρX

over the entire range of latent correlations. In addition, we observe that the dispersion
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of the ES–values is much higher than in the case of normally distributed latent variables,

implying that ES–increases caused by correlation declines can be observed more often.

Figures 8 and 9 confirm the previous findings for the Beta mixing distribution and the

Clayton copula of latent variables.

4 Interpretation of Results

The aim of our simulation study was to find out whether there is some general rule for the

effects of (less than perfect) correlation between operational loss processes. We introduce

dependence through latent variables and assume that the event–type/business–line cells

under consideration are modeled jointly before estimating risk capital; i.e., we do not

assess subadditivity properties.

Surprisingly, we find that for all distributional assumptions considered, risk capital esti-

mates do not necessarily decrease when departing from the assumption of perfect posi-

tive correlation. This counterintuitive effect is observed for low occurrence probabilities

(π ≤ 0.01) and only above a certain threshold for ρX . The threshold decreases as the tail

dependence of the latent variables increases. The effect is of practical relevance only for

rather “extreme” situations, namely, for risk capital estimation at very high confidence

levels for very rare, but (possibly tail–)dependent events. We argue that—beyond the

99.9% confidence level prescribed by the Basel Committee—this setup is exactly what

can be expected for certain event types. Examples are the joint modeling of earthquake

losses across business lines located close to each other, or internal fraud cases in business

lines subjected to the same control environment. Both cases involve events, which rarely

occur. But, in case they do, they will probably hit several cells simultaneously. We have

to keep in mind that the correlation threshold above which this effect arises is that of the

latent correlation. The implied observed correlation, e.g., between earthquake losses, can

be much lower.

Our findings reveal that the idea of generating incentives for modeling dependencies more

realistically by reducing capital requirements may just cause the opposite and increase

capital requirements.

The explanation for the unexpected behavior of the risk capital estimate with respect to

different correlation assumptions is illustrated in Figure 10, showing each 10, 000 draws

from a bivariate normal distribution under two correlation assumptions. The solid lines

represent the thresholds implied by the occurrence probability of π = 0.01. In the upper

plot, with latent correlation ρX = 0.1, this threshold leads to four joint “occurrences”
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(in the southwest quadrant) and 9,798 joint “non–occurrences”. In the lower plot, with

correlation ρX = 0.9, the concentration on extremes leads to 94 joint “occurrences” and

9,854 joint “non–occurrences”. Hence, high correlation not only leads to more joint events,

but also to more joint “non–events”. And it is the increase in joint “non–events” which

lowers the Value–at–Risk estimate as correlation rises.

Figure 10 somewhere here.

Note that we kept the setup of our simulation study as simple as possible. That is,

we assumed exchangeable latent variables as well as constant latent correlations and

occurrence probabilities. In practice, these assumptions will not be met, as, for example,

occurrence probabilities may change over time. This may require a dynamic treatment.

Note that incorporating loss severities—which we neglect in our analysis to focus on the

particular problem under investigation—is easily accomplished by simply adding another

simulation layer. As we tend to deal with low–frequency/high–severity event types, the

severity dimension may be the dominant aspect in such simulations. These issues will be

subject to further research.

5 Conclusion

Introducing less than perfect dependencies should lead to a more realistic description of

potential loss events. Our results show that it is important to assess the impact of corre-

lations given the chosen modeling framework. In the case of rare events, simulated values

for risk measures, such as Value–at–Risk and Expected Shortfall, can increase as the level

of correlation decreases. The parameter ranges for which this phenomenon occurs may

be less relevant for credit risk, but they arise in operational risk applications, where, for

example, several business lines at close locations are likely to be affected by the same

catastrophic event.

For Expected Shortfall, this problem can be circumvented by choosing an appropriate

design of the Monte-Carlo setup. Unfortunately, this is not so for the widely used Value–

at–Risk, which systematically declines above certain levels of latent correlations. The

extent of the problem depends on the observed occurrence probabilities, the confidence

level and the fat–tailedness of the distribution of the latent variables. If the clustering of

realizations at zero (“joint non–occurrences”) is not in line with the true risk–generation

mechanisms, risk capital may be severely underestimated. In this case, other statistical

concepts of dependency should be considered for risk–capital calculation.

A practical implication of our analysis is that the inclusion of non–perfect correlations in

models used for assessing minimum capital requirements for operational risk may, in fact,
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increase the computed requirements.
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Figure 1: Simulated VaR0.99 figures from a Bernoulli mixture model with multivariate

normal latent variables, π ∈ [1.0e-003, 0.01]
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Figure 2: Simulated VaR0.99 figures from a Bernoulli mixture model with multivariate

t–distributed latent variables, π = 0.001, ν ∈ [4, 100]
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Figure 3: Simulated ES0.99 figures from a Bernoulli mixture model with multivariate nor-

mal latent variables, π ∈ [1.0e-003, 0.01]
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(c) B = 1,000,000 (d) B = 10,000,000
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Figure 4: Mean–boxplots of 250 simulated VaR0.999 figures from a Bernoulli mixture model

with multivariate normal latent variables, π = 1.0e-005, B replications
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(a) B = 10,000 (b) B = 100,000
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(c) B = 1,000,000 (d) B = 10,000,000
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Figure 5: Mean–boxplots of 250 simulated ES0.999 figures from a Bernoulli mixture model

with multivariate normal latent variables, π = 1.0e-005, B replications
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(a) VaR0.999, B = 1,000,000
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(b) ES0.999, B = 10,000,000
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Figure 6: Mean–boxplots of 250 simulated VaR0.999 and ES0.999 figures from a Poisson

mixture model with multivariate normal latent variables, π = 1.0e-005, B repli-

cations
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(a) VaR0.999, B = 1,000,000
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(b) ES0.999, B = 10,000,000
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Figure 7: Mean–boxplots of 250 simulated VaR0.999 and ES0.999 figures from a Bernoulli

mixture model with multivariate t–distributed latent variables, ν = 4, π =

1.0e-005, B replications
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(a) VaR0.999, B = 1,000,000
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(b) ES0.999, B = 10,000,000
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Figure 8: Mean–boxplots of 250 simulated VaR0.999 and ES0.999 figures from a Bernoulli

mixture model with beta mixing distribution, π = 1.0e-005, B replications
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(a) VaR0.999, B = 1,000,000
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(b) ES0.999, B = 10,000,000

0 0.25 0.5 0.75 0.99

0

20

40

60

80

100

120

E
S

0.
99

9

ρ
X

Figure 9: Mean–boxplots of 250 simulated VaR0.999 and ES0.999 figures from a Bernoulli

mixture model with a Clayton copula of latent variables, π = 1.0e-005, B

replications
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(a) ρX = 0.1
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(b) ρX = 0.9
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Figure 10: Scatterplots of bivariate normal distributions with ρX = 0.1 and ρX = 0.9
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