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Abstract
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1 Introduction

Extreme value approaches to modeling operational risk severity have gained in popularity

in recent years. As a theory that focuses exclusively on understanding and quantifying

the behavior of processes at extreme levels, extreme value theory (EVT) seems to be

a natural candidate for operational risk modeling. According to EVT, the generalized

Pareto distribution (GPD) is well suited to model extreme losses, because, under a

broad set of assumptions, it represents the domain of attraction of independent losses

beyond a high–level threshold, called the GPD threshold in the sequel. Its popularity

in operational risk modeling stems from a general consensus among researchers that

historically observed operational losses appear to be heavy tailed (cf. Moscadelli, 2004;

and de Fontnouvelle, Rosengren, and Jordan, 2005). Given its successful implementation

in modeling similarly heavy–tailed phenomena in other fields and the heavy–tailed losses

observed in operational risk, EVT seems to be a natural modeling choice. The adoption

of EVT in operational risk modeling has, however, encountered a number of obstacles.

The biggest hurdle faced by modelers using EVT in operational risk is the limited sample

size. While data scarcity is not unique to EVT and affects operational risk modeling

in general, it troubles EVT significantly more, because of its need for sufficiently large

tail–event samples. A quick glance at the EVT literature in other fields shows that the

technique is commonly applied to large samples and, correspondingly, a large number of

tail events (see, for example, Coles and Tawn, 1996).

Data sufficiency is a major but not the only problem faced by practitioners trying to

fit a GPD to tail data. Identifying the appropriate GPD threshold is a challenging but

crucial task, because a misidentified threshold can greatly impact parameter estimates.

The most popular techniques used to determine the threshold, such as the Hill estimator,

do not always provide clear answers. Some recommend defining a fixed percentage as

tail data (for example, 10% of the largest losses). This strategy benefits from being

rule–based, so that the modeler does not have to choose the threshold. However, it may

cause tail samples to be contaminated with non-tail observations.

The combination of small samples and issues of threshold identification leads to sub-

stantial statistical uncertainty for both parameter and capital estimates. In particular,

estimating the shape parameter—i.e., the parameter that plays the dominant role in

shaping the tail of the GPD distribution—with sufficient accuracy is extremely difficult

with modest samples.1 Small changes in the estimates of the shape parameter tend to

1Ruckdeschel and Horbenko (2013) study robustness properties of several procedures for joint esti-
mation of shape and scale in a GPD model. Robust statistics in this context should provide reliable
inference in the presence of moderate deviations from the distributional model assumptions. Our ap-
proach is different. We rely on prior assumptions in achieving acceptable levels of stability in parameter
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have large and asymmetric impacts on capital estimates. Because of the concave rela-

tionship between the shape parameter and the implied capital charge, underestimating

the shape parameter will lead to a relatively small underestimation of capital, whereas

overestimating the shape parameter can lead to explosive capital charges. Consequently,

the resulting capital bias will, on average, be positive and, potentially, large. This is con-

firmed by research indicating that EVT tends to significantly overestimate operational

risk capital—even in reasonably large samples (see, for example, Mignola and Ugoccioni,

2006).2

In order to combat the scarcity of severe historical losses, institutions use external

data and scenario analysis to complement internal loss data. Both data sources come,

however, with their own challenges. On the one hand, external data are usually not

directly usable and require scaling; and, because of our poor understanding of the root

causes of operational risk, no solid scaling mechanism has yet been developed. On the

other hand, scenario analysis data are difficult to incorporate in a quantitative model.

In this paper, we propose a Bayesian estimation method for EVT–based operational

risk models which allows us to address both the statistical uncertainty around parameter

estimates and the incorporation of alternative sources of information into the modeling

process. As a result, the approach we put forth produces compound distributions that

are advantageous in operational risk modeling. The proposed method is based on treat-

ing the unknown parameters as random variables and deriving suitable estimates, using

the Markov chain Monte Carlo (MCMC) methods. By doing so, we avoid maximum like-

lihood estimation, which can be highly problematic due to the “erratic” behavior of the

likelihood function. Moreover, a Bayesian approach allows us to incorporate additional

information into the estimation process in form of priors on unknown parameters. This

information can be based on expert opinion, scenario analysis, or derived from external

data. When the recorded data are insufficient to accurately estimate unknown parame-

ters, priors make it possible to focus on the most plausible region of the parameter space.

The use of expert opinions for specifying prior distributions is not necessarily straight-

forward, as experts may not be familiar with probabilistic descriptions of quantities of

interest. However, elicitation techniques have been developed in Bayesian statistics (see,

for example, Garthwaite, Kadane and O’Hagan, 2005). As will be discussed, direct and

indirect elicitation of expert opinion can be useful strategies for the proposed method.

The paper is organized as follows. Section 2 discusses some important challenges

and capital estimates while being mindful about the potential for significant biases strong priors are
capable of generating.

2A good overview of the challenges of fitting EVT–based models can be found in Diebold, Schuer-
mann and Stroughair (1997) and Embrechts, Klüppelberg, and Mikosch (1997).
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associated with fitting operational risk models with conventional estimation methods.

Section 3 introduces the model and our estimation approach and discusses direct and

indirect elicitation methods. Section 4 describes the MCMC algorithm employed. In

Section 5, we discus the results of a simulation study that assesses how well the proposed

method works. Section 6 concludes.

2 Challenges of extreme value estimation

EVT implies that, under certain assumptions, the tail behavior of extreme events closely

resembles the GPD with cumulative distribution function (cdf)

F1(x|τ, β, ξ) = 1−
(
1 + ξ

x− τ
β

)− 1
ξ
, x > τ, (2.1)

where the unknown parameters τ, β > 0 and ξ are called the GPD threshold (also known

as location), scale and shape parameter, respectively. As discussed in the following,

several important challenges arise when fitting the GPD.

2.1 Threshold choice

Theoretically, the shape parameter estimate stabilizes as the GPD threshold becomes

large. However, in practical applications, the shape tends to decrease when the threshold

increases (see, among others, Aue and Kalkbrener, 2006). Therefore, any predetermined

value of the threshold becomes questionable. This finding is consistent with the find-

ings of researchers applying the GPD in other areas, such as in studies of rainfalls and

floods. Nevertheless, in many applications the threshold value is predetermined, us-

ing some preliminary analysis before fitting the extreme value models. Predetermining

the threshold may lead to biased estimates, however, because thresholds that produce

“plausible” estimates may be selected. For example, one could discard thresholds yield-

ing shape-parameter estimates above one, because, in this case, the mean of the GPD

does not exist and is considered to be unrealistic (Tancredi, Anderson and O’Hagan,

2006). Another strategy is to fix the threshold at a predetermined percentage of upper

order statistics, as suggested by DuMouchel (1983). This may work well for large sample

sizes, but can be quite unfavorable for small sample sizes (Mittnik and Rachev, 1996;

Mittnik, Paolella and Rachev, 1998; and Bermudez, Turkman and Turkman, 2002).

Overall conclusion is that the Hill estimator and its alternatives tend to perform well

for extremely large samples, but all suffer from small sample bias. The main source of

the bias stems from the selection of the appropriate number of tail observations. If one

includes too many observations, the variance of the estimate is reduced at the expense of
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a bias in the tail estimate. With too few observations the bias declines, but the variance

of the estimate becomes overly large. In addition, Hill–type estimators work well in

the case of exact Pareto tail behavior, but they may lead to wrong inference for other

distributions (Embrechts et al., 1997).

2.2 Statistical uncertainty of estimates

Simulation-based evidence in the literature suggests that there is substantial statistical

uncertainty around parameter as well as capital estimates of operational risk models

(Mignola and Ugocioni 2006). Statistical uncertainty around estimates is much more

substantial for heavy–tailed severity distributions, such as the GPD and the lognormal,

relative to light–tailed severity distributions. Standard measures of statistical uncer-

tainty are the bias and the root mean square error (RMSE), given by

b(v̂) =
1

M

M∑

i=1

(v̂i − v0) and RMSE(v̂) =

√√√√ 1

M

M∑

i=1

(v̂i − v0)2, (2.2)

respectively, where M is the number of simulated samples; v̂i is the estimate of an

unknown quantity v corresponding to sample i, with v0 being the true value. Mignola

and Ugocioni (2006) show that, if the number of data points from the GPD severity

distribution is 100 or less, the bias around capital estimates could easily exceed true

capital by 40% and the RMSE can easily be twice the true capital.3 Mignola and

Ugocioni (2006) calculate bias and RMSE when the shape parameter is 0.8 or less.

Clearly, if the true value of the shape parameter exceeds 0.8, the statistical uncertainty

is even higher.

Simple simulation exercises demonstrate that the shape of the GPD has a dominant

affect on the capital estimates, when the shape parameter is close to or exceeds one. Even

slight deviations of this parameter from its true value result in substantial deviations of

implied and true capital. Moreover, capital is asymmetrically sensitive to this parameter.

Upward deviations of the shape result in much larger capital variations than downward

deviations.4 Yet, shape is the parameter most difficult to estimate. Therefore, the key

to success in fitting GDPs is being able to come up with an accurate estimation method,

so that capital estimates remain within certain“safety limits.”

3According to McNeil and Saladin (1997), reasonable safety limits for the two measures are, respec-
tively, 0.1 and 0.6 times true capital.

4This asymmetry makes capital a concave function around the shape’s true value, which explains
why average capital estimates are greater than true capital values.
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2.3 Existing estimation methods

Due to its favorable properties, such as asymptotic efficiency, maximum likelihood esti-

mation (MLE) is frequently used to fit the GPD. It is well known, however, that MLE

does not reach efficiency, even in samples generated from a GPD as large as 500. More-

over, maximum likelihood estimates of GPD quantiles are highly unreliable in small

samples with 50 or less observations, particularly when the shape parameter, ξ, is posi-

tive (Hosking and Wallis, 1987).

The EVT literature has proposed several alternatives to MLE. One of them, the

method of moments, is generally reliable only for ξ < 0.2. For ξ ≥ 0.5, the second and

higher moments of the GPD do not exist, so that the method-of-moment estimates do

not exist either. Addressing the difficulties with MLE and the methods of moments,

Hosking and Wallis (1987) propose the method of probability-weighted moments. This

method differs from the methods of moments by using weighted moments with the

weights being specific functions of the GPD’s cdf. However, the authors study the

properties of this estimator only for ξ < 0.5. Rootzén and Tajvidi (1997) show that for

heavy tailed data with ξ ≥ 0.5 the method of probability weighted moments leads to

seriously biased parameter estimates. They also find that this method systematically

and severely underestimates the quantiles of the GPD.

Castillo and Hadi (1997) propose the so–called elemental percentile method to fit the

GPD. They assume that the threshold value, τ, is fixed, so that only two parameters

need to be estimated. The method is based on the observation that, for any given set

of two empirical quantiles, one can find scale and shape as functions of these quantiles.

The method consists of two steps. In the first step, one calculates the set of parameter

estimates corresponding to all distinct sets of two quantiles. In the second step, one finds

the proposed estimates as the median estimates of the parameters coming from the first

step. To avoid the difficulties related to dealing with very large sets of quantile pairs, the

authors suggest to work with a smaller (for example, randomly selected) subset of pairs.

Since the estimates of the elemental percentile method are found through matching a

specific set of quantiles of theoretical and empirical distributions, the method is silent

about how to fit the rest of the quantiles. Also, in empirical applications, the authors

predetermine the threshold value. Our own extensive study of this method reveals that

it performs poorly in shape estimation when its true value is around or above one.

Other viable alternatives to MLE include estimation methods that are based on mini-

mizing a certain distance measure between the empirical and the fitted distribution, such

as the quantile distance estimation (QDE), or minimizing the Andersen-Darling statis-

tics. An attractive feature of these methods is that, by shifting the focus to accurately
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fitting high–level quantiles, they have the potential of extracting useful information con-

tained in extreme data pertaining to the tail behavior of the severity distribution. Also,

unlike methods of moments and probability weighted moments, the QDE method does

not require the existence of moments. In addition, the estimates of the QDE method

are optimal in the sense that the method minimizes a distance between empirical and

theoretical quantiles. Our experiments with the QDE method, when applied to fitting

the GPD, show that in small samples (with 50 or less tail events) this method slightly

outperforms MLE when it comes to fitting scale, shape and capital by median esti-

mates. Surprisingly, QDE outperforms MLE even when there is model uncertainty, i.e.,

the model is misspecified.5 Still, both MLE and QDE turn out to induce substantial

uncertainties around capital estimates.

Due to the above mentioned difficulties with conventional estimation methods, a

branch of the literature explores Bayesian methods for fitting the GPD. Bayesian meth-

ods are capable of incorporating additional information in the estimation process, when

the sample information is not sufficient to accurately fit a model. The additional infor-

mation can come in the form of prior knowledge, such as expert opinion, about unknown

model parameters. In operational risk applications, external data and scenario losses

also become a source of additional information. Among others, Behrens, Lopes, and

Gamerman (2004) propose a Bayesian model with GPD tails, in which the prior distri-

bution of the parameters is obtained from experts through elicitation procedures. Their

MCMC method works well for shape parameter values below 0.5. Several papers that

fit the GPD to the tail of historical operational losses report that, in practice, the shape

parameter can even exceed one (see, among many others, de Fontnouvelle, Rosengren,

and Jordan, 2005; and Moscadelli, 2004). Therefore, the method of Behrens, Lopes, and

Gamerman (2004) may not be well suited to fit operational risk losses.

2.4 Model uncertainty

Practical applications of extreme value estimation in operational risk are associated with

significant challenges due to the nature of loss data—tail events are infrequent but highly

sever (cf. Chavez–Demoulin, Embrechts, and Neslehova, 2005). In addition, different

severe losses could have occurred due to different causes creating heterogeneous sets of

tail events. Under these conditions, the strict assumptions of asymptotic theory are not

always satisfied. Such a situation occurs when, for example, the true data–generating

process is different from a model being fitted. Following the literature, we refer to this

situation as model uncertainty. When model uncertainty exists, the estimation bias in

5We provide the details of this investigation in Section 2.6.
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small samples could be significant, because the sample size is not sufficient for asymptotic

properties to work. The simulation exercise of Section 2.6 shows, in particular, that the

effect of model uncertainty on capital estimates can be substantial when sample sizes

are small.

2.5 Optimization

Samples with rare large losses typically hamper optimization due to irregular likelihood

surfaces characterized by both multiple local optima and flat regions. For example,

Dutta and Perry (2006) report that the convergence of their estimates is very sensitive

to starting values of the parameters and point to the possibility of the likelihood function

exhibiting multiple local optima. They also provide evidence that the poor performance

of the GPD model may be the result of non–convergence. In such situations, conven-

tional optimization techniques, such as the Newton method, become unreliable as they

are based on differential calculus and solutions of first–order conditions. Therefore, in

operational risk applications, a conventional optimization techniques might produce a

local optimum in the neighborhood of the starting point, provided it converges at all.

To overcome this challenge, we use simulated annealing (Kirkpatrick, Gelatt and

Vecchi, 1983) to find the global optimum. This optimization heuristic with probabilistic

acceptance criteria is arguably the most popular among several powerful routines that

have appeared in recent years as alternatives to classical optimization techniques. It

iteratively suggests slight random modifications to the current solution and, by doing

so, gradually moves through the search space. A crucial property of simulated annealing

is that not only modifications for the better are accepted, but also for the worse, in order

to escape local optima. A probabilistic criterion is used to decide whether to accept or

reject a suggested worse move. However, this probability declines over time according

to some “cooling schedule,” allowing the method to converge. The simulated algorithm

that we use is described in Ergashev (2008).

An important characteristics of simulated annealing is that it largely avoids non-

convergence and, thus, practically always delivers an answer. However, two caveats

need to be kept in mind: first, there is no guarantee that simulated annealing always

delivers the best possible result, and, second, simulated annealing requires some tuning

to make sure that proper inputs are chosen. In practical applications, one could perform

tuning, using simulated data with characteristics that are similar to those of the observed

sample. This process could be time consuming, however. The new method proposed

here does not require high levels of accuracy to obtain the global optimum to find the

proposal densities of the MCMC algorithm via simulated annealing. It is sufficient to
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run a few iterations of annealing to approximate a proposal density’s mode and the

curvature at the mode. We discuss details in Section 4.

2.6 A simulation exercise

To emphasize some of the challenges mentioned above, we conduct a simulation exercise

in which we compare the performance of MLE and QDE6 methods in situations with and

without model uncertainty. For the case of absence of model uncertainty, we generate loss

samples from a GPD and fit a GPD model. In the second case, when model uncertainty is

assumed, the fitted model is still the GPD, but the samples are generated from a mixture

of two lognormals. Both cases capture a very realistic situation where, due to a small

sample size, the asymptotic conditions are not satisfied. To ease the estimation problem,

we assume that the location and the frequency parameters, τ and λ, are known. In other

words, we apply the MLE and the QDE to estimate only two parameters, namely, scale

and shape.

For the simulation exercise, we let each sample contain 50 losses, on average, col-

lected over n = 5 years, i.e., an annual loss frequency of λ0 = 10. For the case of no

model uncertainty, 1,000 samples of losses are generated from the severity GPD with the

following true location, scale and shape parameters: τ0 = 105, β0 = 104, ξ0 = 0.9. The

implied true operational risk capital is about 46 × 106. In the case where we allow for

model uncertainly, the true data–generating process is a mixture of two truncated log-

normal distributions, and we fit 1,000 data samples from the mixture distribution with

the following true parameters: µ10 = 5, σ10 = 2, µ20 = 15, σ20 = 1. Both lognormal

distributions are truncated from below at τ0 = 105 to capture only tail losses. Also, we

assume that, on average, 9 out of 10 draws come from the first distribution. For this

specification, the implied true capital is about 82× 106.

When applying the QDE, we optimize the equally weighted quantile distance between

the theoretical and empirical quantiles of the logarithm of the losses.7 The main reason

for using the different optimization algorithms is to demonstrate the gain in accuracy

(relative to the standard estimation technique) that comes with combining QDE with

simulated annealing. Also, it is well known that standard optimization techniques, such

as the Newton-Raphson, may lead to estimates that are heavily dependent on starting

6The quantile distance is defined as a weighted sum of squares of the distances between corresponding
empirical and theoretical quantiles. In this paper, we use equal weights and all observed data points
from the GPD as the set of empirical quantiles for the definition of the quantile distance, see (4.3). The
main reason for using equal weights and the set of all empirical quantiles is to minimize the possibility
of affecting final results by fiddling with those choices.

7All calculations were carried out in Matlab. To maximizing the likelihood, we use Matlab’s built-in
standard maximum likelihood function.
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Table 1: Accuracy of capital estimates using MLE and QDE to fit a aeneralized
Pareto distribution
Each case summarizes the results of fitting 1,000 samples to the GPD. The samples consist
of 50 observations on average. In Case 1, the true data–generating process is the GPD;
in Case 2, it a the mixture of two lognormals that are truncated from below at the GPD
threshold. All estimates are reported as multiples of the true capital numbers.

Case 1: absence of model uncertainty

Method Mean 25% quantile Median 75% quantile Bias RMSE
MLE 7.4 0.2 0.6 2.7 6.4 41
QDE 3.6 0.5 1.0 2.4 2.6 14
Case 2: presence of model uncertainty

Method Mean 25% quantile Median 75% quantile Bias RMSE
MLE 485 7.1 40 206 484 1,829
QDE 323 9.8 79 281 322 889

values. To properly account for this challenge, we choose the starting points for scale

randomly from the lognormal distribution, with parameters 11 and 1, and the starting

points for shape randomly from the lognormal distribution, with parameters 0 and 0.1.

The latter distribution is truncated from above at 2. The main reason for setting an

upper limit of 2 for the starting point of shape is that, to our best knowledge, reported

estimates for this parameter never exceed 2.8

Table 1 summarizes the results of the above exercise. It reports the mean and

median estimates as well as the bias and the root mean square errors (RMSE) of the

capital estimates. The table shows that the QDE is more accurate than MLE—both

when model uncertainty is absent or present. QDE seems to perform better because in

small samples QDE fits, on average, the right tail of loss samples more accurately than

MLE. Nevertheless, both methods produce substantial statistical uncertainty around the

capital estimates—the biases and RMSE of the capital estimates exceed by far reasonable

safety limits set at 10% and 60% of true capital (McNeil and Saladin, 1997).

While estimating Case–2 samples, we encountered the challenge of being unable to

reject samples that result in unrealistically large capital estimates. The capital estimates

were sometimes greater than the total asset values of the largest U.S. banks. None of

the common tests, such as Anderson–Darling, Kolmogorov–Smirnov, Cramer–von Mises,

could detect these samples. The results reported for Case 2 in Table 1 are obtained after

8We decided to use the above lognormal distributions for the starting points, because these distri-
butions play the role of the priors in the next section when we perform another simulation exercise
to evaluate the performance of our proposed method. This way, we are making sure that the results
of these two exercises are comparable. We also tried different starting points, such as the uniform
distributions U(103, 106) and U(0.1, 2) for scale and shape, respectively. However, our findings did not
change qualitatively.
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removing a few (3-4 samples out of 1000 for each method) that led to capital estimates

greater than 3×1012. The findings of this simulation exercise suggest that the standards

tests are not always useful in assessing the goodness–of–fit of operational risk models

and that the incorporation of human judgment may be necessary.

In the remainder of the paper, we develop a Bayesian estimation technique, which

allows us to incorporate expert judgment into the estimation framework in a transparent

and theoretically sound way.

3 Bayesian approach

We propose a novel Bayesian estimation method that is well suited to fit a heavy–tailed

GPD with the shape parameter being close to or exceeding one. The method can reduce

the uncertainty around the capital estimates through the incorporation of additional

information into the estimation process in form of prior assumptions about the unknown

parameters. In our setting the severity distribution consists of the body and a GPD tail.

We include the body, which is truncated from above at the GPD threshold, to improve

the accuracy of the capital estimates. Our estimation method (described in Section 4)

treats the GPD threshold as an unknown parameter that needs to be estimated.

In the remainder of the section we present the model and discuss some important

features of our estimation method, including the prior elicitation process.

3.1 The EVT model

Losses falling below the GPD threshold are commonly not modeled, because it is be-

lieved that there is little to gain from incorporating the information below the threshold,

when estimating high quantiles (Hall, 1975). Although this may be true in principle, in

operational risk the inclusion of losses from the body of the distribution adds a positive

value to operational risk capital. Therefore, rigorous operational risk modeling requires

the inclusion of those losses as well. Based on this notion, we model body losses and

assume that there is an unobserved truncation point, τ > 0, which separates tail losses

form body losses. In other words, the body consists of small losses that occur frequently,

with the maximum amount of losses not exceeding τ , while the tail consists of losses

that occur infrequently and exceed τ. We assume that the distribution of the body losses

is lognormal,9 which is truncated from above at τ. Since the tail losses are fitted with

a GPD, τ is the obvious GPD threshold. Hence, the probability distribution function

9Other distributions, such as the gamma, could also be chosen to fit body losses. However, our
experience shows that usually the choice of the body distribution does not play a dominant role in
determining the amount of capital as long as the GPD threshold estimate is reasonable.
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(pdf) of the severity distribution is

f(x|µ, σ, τ, β, ξ) =
1√
2πσx

exp
{
− (log x− µ)2

2σ2

}
I{0<x≤τ}

+
1− F2(τ |µ, σ)

β

(
1 + ξ

x− τ
β

)− 1
ξ
−1
I{x>τ}, (3.1)

where F2(·|µ, σ) is the cdf of the lognormal distribution with the parameters µ and σ;

and IA is the indicator function of event A. Although it is theoretically possible that, in

operational risk applications, −∞ < τ < +∞ and −∞ < ξ < +∞, we assume τ > 0

and ξ > 0.10

To define the likelihood of the model, let N be the total number of losses in a sample,

and X = (X1, . . . , XN) the set of all losses. Then, the likelihood is given by

p(X|µ, σ, τ, β, ξ) =
N∏

i=1

{
1√

2πσXi

exp
{
− (logXi − µ)2

2σ2

}
I{0<Xi≤τ}

+
1− F2(τ |µ, σ)

β

(
1 + ξ

Xi − τ
β

)− 1
ξ
−1
I{Xi>τ}

}
. (3.2)

3.2 Prior distributions and their elicitation

Bayesian techniques are well suited to incorporate expert opinion about unknown quanti-

ties, such as plausible operational losses or the parameters of a model, into the estimation

process. To do so, expert knowledge needs to be formulated as a prior distribution of

the quantity of interest. Updated knowledge comes in the form of the posterior distri-

bution, which is equivalent to the prior distribution multiplied by the likelihood of an

available data sample. Therefore, the posterior distribution combines the information

contained in both the prior and the data sample by treating them as independent pieces

of information. Usually, and especially when the sample is informative, it is preferred to

impose uninformative priors—or not to impose any prior assumptions at all—to let the

data drive the results. However, if the data sample is not informative, prior knowledge,

provided that it is informative, will tend to prevail in the updated knowledge.

In practical applications, priors can be obtained through elicitation. Elicitation is

the process of translating an expert’s opinion about some uncertain quantities into prob-

ability distributions that reflect the prior knowledge about those quantities. Typically,

experts are unfamiliar with the meaning of probabilities. Even if the expert is, it is

not easy to assign probability distributions to uncertain quantities. Therefore, elicita-

tion often involves a facilitator, whose role is to assist the expert in formulating his/her

10Since operational risk losses are positive, it is natural to assume that τ > 0. If ξ < 0, generalized
Pareto random variables are limited from above and cannot exceed τ − βξ.
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opinion about a quantity in a meaningful probabilistic form. Typically, elicitation is an

iterative process consisting of: summarizing the expert opinion in probabilistic terms,

fitting a probability distribution to the summary, and assessing the adequacy of the elic-

itation with the expert opinion. If the fit is inadequate, then, the facilitator continues to

elicit more summaries from the expert until the fitted probability distribution becomes

adequate.

If a prior is symmetric, it is easier to elicit that prior based on the mean and standard

deviation. In contrast, the elicitation of a skewed prior is easier through the elicitation of

expert opinion via quantiles rather than mean or standard deviation. Humans’ ability to

estimate simple statistical quantities has been examined in psychological research over

several decades. Experiments show that, for symmetric distributions, subjects’ estimates

of the mode, mean, and median tend to be highly accurate. When samples were drawn

from highly skewed distributions, subjects’ assessment of the median and mode were still

reasonably accurate, while their assessments of the mean were, however, biased toward

the median (Beach and Swenson, 1966; and Peterson and Miller, 1964). Therefore, when

forming skewed priors, a facilitator should elicit expert knowledge based on quantiles,

such as the first quartile, median, third quartile, 99% quantile, etc.

As discussed next, elicitation of expert opinions can generally be done directly or

indirectly.

Direct elicitation

In direct elicitation, the facilitator requests an expert’s opinion about each unknown

model parameter. Consider, for example, elicitation of a prior distribution for σ. It

is natural to impose an inverse gamma prior on σ2, a skewed distribution that takes

only positive values. To specify this prior, the facilitator needs to obtain the expert’s

best estimates of the first quartile, median etc. of the distribution of σ2. Based on the

obtained data, the facilitator finds the parameters of the best fitting inverse gamma

prior. The elicitation of µ should be easier, since a natural prior is the normal prior,

which is symmetric. Therefore, the facilitator should directly elicit the expert’s opinion

about the mean value of µ and its standard deviation.

The elicitation of a prior for the shape parameter is challenging, because, contrary

to µ and σ, the concept of distributional shape is not well understood. Therefore, one

may rely on the simplest form of elicitation, namely, asking the expert to specify a

range in which the parameter is believed to lie. If this is all the facilitator can elicit

from the expert, then, it is natural to assume a uniform distribution over the range. For

example, when eliciting an expert’s opinion about the shape parameter, this simple form

12



of elicitation may be preferable, because the implied capital might be sensitive toward

the choice of the prior for this parameter. In some cases, it is possible to choose the

range for some parameters based on absolute physical limits.

In this study, we use the uniform prior over [0.1, 2] for the shape parameter. The

reason for forcing the shape to be positive is that otherwise the GPD tail is truncated

from above at a finite value. If the shape is zero, the GPD becomes the exponential

distribution, which is, in general, unsuitable as it is a light–tailed distribution. Instead,

to be conservative, we assume that the shape parameter is positive and greater than,

say, 0.1. The choice of 2 as the upper limit for the shape is motivated by the fact that

the resulting capital (assuming that the other parameters are fixed at the levels specified

in Section 2.6) is comparable to the market value of largest U.S. banks, which sets a

clear physical limit to any imaginable operational loss of any U.S. bank. In addition,

the reported estimates of the shape parameter never exceed 2. Therefore, in our view,

the uniform prior over [0.1,2] for shape cannot be viewed as an informative prior.

The elicitation of a prior for the GPD threshold is also challenging, because this

parameter does not have any direct, intuitive interpretation. Therefore, obtaining expert

opinions from, say, line–of–business managers may not be promising. Perhaps the best

way of approaching this challenge would be to perform some preliminary analysis using

traditional methods, such as the Hill estimator, and then concentrating the prior around

the preliminary estimate. Alternatively, one could use indirect elicitation, which is

described next.

Indirect elicitation

It should be noted that expressing prior beliefs directly, in term of a model’s unknown

parameters, is not an easy task. For example, experts may not be able to fully understand

the meanings of each parameter of a model. Usually, experts are more comfortable with

thinking in terms of the worst losses that could occur once in, say, 5, 10, 50 years or

so. To handle this, Coles and Tawn (1996) and Coles and Powell (1996) introduce the

idea of elicitating information in terms experts are more familiar with. In the context

of finding the priors of the GPD, this can be done as follows. The facilitator explains

to the experts that they need to think in terms of tail losses that occur infrequently.

The facilitator determines three quantile levels, 0 < pi < 1. For example, these could be

80%, 90%, and 98% quantiles, so that p1 = 0.80, p2 = 0.90, and p3 = 0.98. Then, the

facilitator asks the expert to come up with three tail–loss amounts, L1, L2 and L3, of

which the ith amount is the worst tail event in a period of ni years, i.e.,

ni =
1

1− pi
.
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The three losses specified, say L1, L2, and L3, are linked to the unknown GPD parameters

via

pi = exp
{
− 1

λ

[
1− F1(Li|τ, β, ξ)

]}
, i = 1, 2, 3, (3.3)

where F1 is the cdf of the GPD defined by (2.1), and λ is an unknown parameter of the

Poisson (annual) frequency of losses. The last formula is derived from the well known

relationship between the cumulative probability distribution functions of the severity

and the maximum loss (see Ergashev, 2012, for further details). One can find the

parameters τ, β and ξ by solving the three equations (3.3). By repeating this exercise

many times, and possibly with many experts, the facilitator can form priors on the

unknown parameters of the model.

4 MCMC sampling

Because the target densities of the parameters are not standard densities, we sample the

parameters of the severity distribution using the Metropolis–Hastings (MH) algorithm.

The MH algorithm is a general MCMC method to produce samples from a given target

density. The target density of a parameter (or set of parameters) is the full conditional

density of that parameter (set) conditioned on the rest of the parameters of a model.

Bayes theorem implies that this full conditional density is equivalent to the posterior

density. By construction, each sample from the MH algorithm constitutes a Markov

chain of dependent draws. The algorithm is based on a proposal density that generates

a proposal value and a probability of move that is used to determine whether the proposal

value should be taken as the next draw from the target density. As proposal density one

chooses a standard density (for example, normal, t-, or gamma densities), from which

one can easily obtain random values with the help of a random number generator. Each

proposal value is accepted as a draw from the target density with a probability of move.

If the proposal value is rejected, the last draw in the chain is retained as the next draw.

The probability of turning draws from the proposal density to draws from the target

density is controlled by the acceptance rate.

4.1 Blocking

The design of the MCMC algorithm should be such that it produces samples that mix

well and, thus, quickly converge to the posterior distribution. Perhaps, the first step in

designing an efficient MCMC algorithm is sampling the unknown parameters in properly

chosen blocks. When a model contains many parameters, sampling highly–correlated

parameters in a separate block, using a multiple block–MCMC algorithm, helps to im-
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prove mixing. Below we will use this strategy when designing our MCMC algorithm.

Specifically, we separate the parameters of the severity distribution into three blocks.

In the first block we only sample shape parameter ξ. The second block consists of

the parameters τ and β. The third block contains the parameters that essentially form

the body distribution, µ and σ. Extensive experimentation indicated that this blocking

scheme was the most efficient one among several alternatives explored.

We sample λ in a separate step by the so–called Gibbs sampling algorithm, using

a gamma conjugate prior and the Poisson–gamma update. The Gibbs sampler is a

particular variant of the MH algorithm, in which the target density is a standard density.

Therefore, the sampling can be performed using standard random number generating

functions.

4.2 Proposal densities

The next step in designing an efficient MCMC algorithm is making sure that the proposal

densities, from which proposal draws are generated in each block, are chosen carefully. It

turns out that the straightforward and popular approach to forming proposal densities,

the random–walk Metropolis-Hastings (RWMH) algorithm, where the candidate value

is drawn according to a random–walk process, is not the best approach for a number of

reasons. For one, it is well known that the RWMH algorithm tends to generate draws

that are highly serially correlated. Therefore, the chain moves inefficiently through

the support of the target distribution. To compensate for this inefficiency, the MCMC

algorithm has to be run for many thousands of draws. In addition, the acceptance rates

of the draws generated are very low. In our analysis, acceptance rates never exceeded

20%.

For these reasons, we follow the approach of Chib and Greenberg (1995) to sampling

proposal draws, in which candidate values are sampled from a tailored multivariate nor-

mal or Student t proposal densities. The mode and the curvature of the tailored proposal

density is approximated by the mode and the curvature of the target density, with the

curvature being computed as the negative of the Hessian at the mode. This strategy has

considerable intuitive and theoretical appeal. The proposal density essentially comes

from a second–order Taylor series expansion of the log target density. It has been found

to be valuable in many applications (see, for example, Chib and Ergashev, 2009, and

references therein).

We use the method of tailoring when forming the proposal densities for all three

blocks. For the second and third blocks, we find the mode by maximizing the target

density as suggested in Chib and Greenberg (1995). For the first block it turns out,
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however, that this method of finding the mode works well only when the number of tail

events is large enough to contain sufficient information about the tail behavior. If the

number of tail events is 50 or less, we prefer using the QDE method to find the mode.

4.3 Some technical considerations

In all three blocks, the optimization in search for the mode is performed using simulated

annealing as both the target density and the quantile–distance statistic exhibit numerous

local optima. For this purpose, the simulated annealing algorithm does not have to reach

convergence. It is enough to find an approximate mode using only a few iterations. We

use the following inputs: the initial “temperature” is 1; the “cooling” schedule is such

that the new temperature is 0.9 times the previous temperature; the final temperature

is 0.7; the new move is proposed as θnew = θold+
1
50

eν, where θ is the vector of unknown

parameters of a particular block, e is the unit vector of the same size as θ with 1 in

a randomly chosen position, and ν is a standard normal random variable (for further

details, see Ergashev, 2008). The output of the simulated annealing process (i.e., the

final value of θnew) is chosen to be the mode of the multivariate normal proposal density;

and the covariance matrix (i.e., curvature) of the proposal density is calculated as the

inverse of the negative Hessian of the target density at the mode.

To avoid constrained optimization, we transform all parameters (except for µ), so

that the transformed parameters have the real line as their domain:

θ1 = log ξ, t = log τ, b = log β, s = log σ. (4.1)

To show how the MH steps of our algorithm work, we consider the first block that

samples θ1. The target density in this block is

f(θ1|X, µ, σ, τ, β) ∝ π(ξ)
N∏

i=1

{
Ci + C

(
1 + ξ

Xi − τ
β

)− 1
ξ
−1
I{Xi>τ}

}
, (4.2)

where ξ = exp(θ1), π(ξ) is the priors of ξ, and

Ci =
1√

2πσXi

exp
{
− (logXi − µ)2

2σ2

}
I{0<Xi≤τ}, i = 1, · · · , N, C =

1− F1(τ |µ, σ)
β

.

It should be noted that quantities, C1, ..., CN , and C are fixed from the perspective of

maximizing the right–hand side of (4.2) with respect to θ1. If the average number of

exceedances over the threshold is greater than 50, we find the mode of the proposal

normal density and compute the variance of the proposal density as the inverse of the

negative Hessian at the mode.

As pointed out earlier, when searching for the mode, the target density on the right–
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hand side of (4.2) becomes practically useless in situations where a the number of ex-

ceedances over threshold is about 50 or less. In this case, the likelihood is practically flat

around the true value of θ1. In other words, the likelihood function does not capture any

significant information contained in large losses about the true value of this parameter,

because the likelihood assigns small weights to those losses. Based on this observation,

we decided to find the mode by minimizing the equally weighted distances between the

quantiles of the set of all empirical losses exceeding τ and the corresponding quantiles

of the GPD. The square of this quantile distance is given by

Q2(Y|τ, β, ξ) =
k∑

i=1

(
log Yi − logQi

)2
, (4.3)

where k is the number of exceedances over the threshold, τ ; Y1 ≥, . . . ,≥ Yk > τ are the

empirical quantiles (i.e., the order statistics) of the losses exceeding the threshold; and

Qi is the theoretical quantile corresponding to the quantile-level of

pi =
N − i+ 1

N + 1
, i = 1, . . . , k.

The theoretical quantiles are the solutions to

pi = F2(τ |µ, σ) +
{
1− F2(τ |µ, σ)

}
F1(Qi|τ, β, ξ), i = 1, ..., k.

In (4.3), we use the logarithm of the quantiles instead of the quantile, because they

turned out to produce more stable results.

To be more specific about how we sample θ1 in the first block, let us denote the right–

hand side of (4.2), i.e., the target density for sampling this parameter, by g(θ1,X). Since

θ1 is unconstrained, we use the following univariate normal proposal density q(θ1) =

N (θ1|m, v), where m is the mode of the target density in terms of the transformed

parameter θ1 = log ξ; and v is the curvature at the mode. To make sure that the

MCMC algorithm explores the posterior base efficiently, the mode and the curvature

are recalculated for each MCMC iteration. Let θ
(j)
1 denote the value of θ1 in the j-th

iteration of the MCMC algorithm. To draw the next value of θ1, we draw a proposal

value θ∗1 ∼ q(θ1) and accept θ∗1 as the next value, θ
(j+1)
1 , with the probability given by

min
{
1,

g(θ∗1,X)π(θ∗1)

g(θ
(j)
1 ,X)π(θ

(j)
1 )

q(θ
(j)
1 )

q(θ∗1)

}
.

If the proposed value is rejected, we take θ
(j)
1 as θ

(j+1)
1 .

We employ similar MH algorithms when sampling θ2 = (t, b) and θ3 = (µ, s) in

the remaining two blocks. In each of these blocks we find the mode of the bivariate

proposal normal density by approximately maximizing the appropriate target density,
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using simulated annealing, and compute the covariance matrix of the proposal density

as the inverse of the negative Hessian at the mode.

The choice of a gamma–prior for λ allows us to sample the frequency parameter using

the Poisson–gamma update (Ergashev, 2009)

G
(
λ
∣∣∣aλ +N,

bλ
1 + nbλ

)
. (4.4)

In case of no prior assumption, the update is given by

G
(
λ
∣∣∣N, 1

n

)
. (4.5)

4.4 EVT fitting when all losses are observed

The algorithm for sampling the parameters of the model from their posterior distribu-

tion, when there is no data collection threshold and, hence, all losses are observed, can

be summarized of follows:

Algorithm 1:

Step 1 Initialize µ, σ, τ, β, and λ; fix j0 (burn-in) and J (the MCMC sample size); set

j = 1.

Step 2 While j ≤ J + j0:

(a) Sample θ1 using the MH algorithm from the target density given by (4.2)

(b) Sample θ2 = (t, b) using the MH algorithm

(c) Sample θ3 = (µ, s) using the MH algorithm

(d) Transform (θ1, t, b, s) to (ξ, τ, β, σ) using (4.1)

(e) Sample λ from (4.4) or (4.5)

Step 3 Increment j to j + 1 and go to Step 2

Step 4 Discard the draws from the first j0 iterations and save the subsequent J draws

of µ, σ, τ, β, ξ, and λ.

4.5 EVT fitting when losses below a threshold unobserved

For cost considerations, among other reasons, most institutions do not collect small

losses falling below a certain predetermined data collection threshold (BIS, 2008). Fit-

ting operational risk models is challenging when losses falling below a threshold are not
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observed, because there is no readily available and sufficient information about the be-

havior of unobserved losses and their frequency—especially, when the observed sample

is small. As a result, profile likelihoods of the parameters of the body distribution be-

come flat and tend to produce meaningless outcomes with poor or substantially biased

capital estimates. For example, when fitting the lognormal distribution to the body, a

significantly overestimated mean parameter in combination with a significantly underes-

timated standard deviation parameter, or vice versa, can be obtained. Making matters

worse, the optimization algorithm may not even converge, if the likelihood surface ex-

hibits multiple local optima.

The Bayesian approach helps to reduce the severity of such problems in the sense

that strong priors on the body parameters can introduce valuable information that turns

a flat or irregular likelihood with multiple local optima into a better–behaving posterior,

making estimation much easier. One should be aware of the fact that strong priors

concentrated far away from the true value can induce a substantial bias. However, our

experience suggests that, as long as those strong priors are not unreasonably off the true

values, the resulting bias becomes dwarfed relative to the bias caused by inaccuracies

about the shape estimate.

Next, we extend the proposed method to account for the existence of a data-collection

threshold. For this purpose, we follow Chib (1992) and treat unobserved losses as being

censored. Chib (1992) proposes restoring the censored part of the data at each iteration

of the MCMC algorithm by sampling that part conditioned on all other parameters of

the model. Unfortunately, and different from the setup in Chib (1992), the number of

censored losses itself is unknown and changes with every iteration of the MCMC sampler

when the other parameters of the model change. Therefore, an extra step in the MCMC

algorithm is required to generate the number of censored losses. To discuss further details

of how to deal with the censoring issue, we introduce additional notation. We denote by

X the set of observed losses (i.e., losses that exceed the data collection threshold) and by

N the total number of observed losses. These losses, combined with set of the censored

losses, denoted by X, form the set of all losses, X = (X,X), consisting, altogether, of

N = N +N (censored and observed) losses.

Given µ, σ, τ, and λ, the number of censored losses, N , is Poisson with the mean

parameter λnF1(τ |µ, σ). Also, given N,µ, and σ, the censored losses are sampled from

the following lognormal distribution, truncated from above at the threshold T ,

f(X|µ, σ) = LN (−∞,T )
(
X|µ, σ

)
. (4.6)

Once we simulate censored losses and add them to the set of observed losses, we are
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back to a situation compatible with Algorithm 1; and our algorithm for sampling the

parameters of the EVT model, when losses below a data collection thresholds are not

observed, is summarized s follows:

Algorithm 2:

Step 1 Initialize µ, σ, τ, β, and λ; fix j0 (burn-in) and J (the MCMC sample size); set

j = 1.

Step 2 While j ≤ J + j0:

(a) Simulate, N, the number of censored losses from the Poisson distribution

with the parameter λnF1(τ |µ, σ) and calculate the total number of losses

N = N +N

(b) Simulate a random set of N censored losses, X, from (4.6)

(c) Repeat Step 2 of Algorithm 1

Step 3 Increment j to j + 1 and go to Step 2

Step 4 Discard the draws from the first j0 iterations and save the subsequent J draws

of µ, σ, τ, β, ξ, and λ.

5 A simulation study

To assess whether the proposed method is capable of producing reliable results, we

conduct a simulation study. In this study, we chose specifications that are similar to those

of the simulation exercise in Section 2.6, to be able to directly compare the performance

of the MCMC relative to that of MLE and QDE. Specifically, we consider again two

cases: Case 1 covers a situation where there is no model uncertainty; Case 2 allows for

model uncertainty.

For Case 1, we generate losses from the same GPD data generating process with the

same parameters as in Section 2.6, namely, τ0 = 105, β0 = 104, ξ0 = 0.9, with the body

losses being generated from the lognormal distribution LN (5, 3) that is truncated from

above at τ0. With ρ0 = 0.9, only 10% of losses are generated from the body, which means

that a sample of n = 5 years of losses, with true annual frequency λ0 = 100, contains,

on average, 500 losses of which 50 are tail losses. The implied true capital amount is

about 47×106. Once the losses have been generated, to be close to a realistic setting, we

assume that there is a data collection threshold of 10,000, and we drop all losses falling

below the threshold.
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In Case 2, the true data generating process for loss severity is the mixture of three

lognormal distributions, namely, LN (5, 2), LN (12, 0.5) and LN (15, 1). The first two

distributions resemble the body, but all three contribute to the tail losses. The mixture

proportions are 0.9, 0.09 and 0.01. This means that for a sample of size 500, on average,

450 losses come from the first distribution, 45 from the second and 5 from the third

lognormal distributions, respectively. The implied true capital amount is about 82×106.
Again, once the losses have been generated, we drop all losses falling below the data

collection threshold of 10,000.

In both of these cases, we generate 1,000 loss samples and fit the EVT model to the

samples via Algoritm 2.

5.1 Priors

We consider two sets of informative priors on the parameters of the severity distribution.

The first set consists of moderately informative flat priors, while the second set consists

of informative priors that are concentrated around specific parameter values. When

choosing flat priors, we keep two conflicting goals in mind, namely, making priors as little

informative as possible, while still minimizing the possibility of sampling from highly

unlikely regions of the parameter space. The informative priors chosen are strongly

concentrated around the parameter estimates we have observed in practice. Clearly,

although these priors serve the purpose of demonstrating the workings of the proposed

procedure, they are by no means applicable to the broad range of cases encountered in

practice.

The chosen set of flat priors is given by

π(µ) = U(7, 8), π(σ) = U(2, 3),

π(τ) = U(Xmin, Xmax), π(β) = U(103, 106), π(ξ) = U(0.1, 2),

where Xmin and Xmax are the observed minimum and maximum losses. It should be

noted that all these priors are moderately informative in the sense that they are uniformly

distributed over a broad range of possible values for the parameters.

The concentrated priors are specified by

π(µ) = N (7, 0.01), π(σ) = IG(104, 3× 104),

π(τ) = LN (11, 1), π(β) = LN (11, 1), π(ξ) = LN (0, 0.1).

We choose both sets of priors solely for the purpose of demonstrating how the method

works. In practice, one may choose priors based on a preliminary analysis through
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elicitation of expert opinion, a study of external data, or some other useful sources of

information, such as scenario analysis.11

5.2 MCMC diagnostics

To assess the accuracy, we compute, as in Section 2.6, the bias and RMSE for the capital

estimates. The smaller the (absolute) values of these quantities, the better the estimation

results. When there is no model uncertainty, we summarize the MCMC output in terms

of point estimates of the unknown parameters (together with the standard deviations

around the estimates), as they can be compared to the true parameter values. We also

report the average values of the acceptance rates and the inefficiency factors (Chib,

2001) for each MCMC block. Generally, the higher the acceptance rate the faster the

MCMC chain moves. The inefficiency factor indicates the degree of serial dependence in

generated draws: the higher the factor, the stronger the serial dependence. Therefore,

the larger the inefficiency factors, the larger the necessary size of the MCMC series to

obtain a sufficiently accurate summary of the posterior distribution. The inefficiency

factor of a particular parameter is measured via

1 + 2
K∑

k=1

(
1− k

K

)
ρ(k), (5.1)

where ρ(k) is the lag-k autocorrelation of the MCMC draws of that parameter; and K

is some large number—in our case, K = 1, 000.

Some other useful diagnostic tools include monitoring the evolution of sample quan-

tiles and the autocorrelations of the sample output as the sampling proceeds. Instability,

unusual trends, or too much stability in the quantiles estimates over time might require

a revision of the MCMC algorithm. Also, slowly decaying autocorrelations may indicate

problems with the mixing of the MCM chain.

5.3 Estimation results

Table 2 reports the mean, bias, RMSEs, and selected quantiles of the capital estimates

both for Case 1 and Case 2. The results clearly demonstrate that our MCMC approach

dramatically reduces the bias and the RMSE of the capital estimates compared to the

conventional estimation methods (see Table 1). This holds even in the presence of model

uncertainty. The main source of this enormous reduction in uncertainty is that properly

chosen priors diminish the possibility of obtaining parameter estimates that come from

unreasonable regions of the parameter space. When the fitted model matches the data

11Note that we do not impose any prior assumption on λ.
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Table 2: Accuracy of capital estimates obtained via MCMC method
All estimates are reported as multiples of the true capital numbers.

Case 1: absence of model uncertainty

Priors Mean 25% quantile Median 75% quantile Bias RMSE
Flat 2.8 0.3 0.8 1.3 1.8 9.8
Concentrated 1.6 0.6 1.2 1.8 0.7 1.7
Case 2: presence of model uncertainty

Priors Mean 25% quantile Median 75% quantile Bias RMSE
Flat 1.2 0.1 0.3 0.8 0.2 13.7
Concentrated 30.4 17.2 25.6 38.3 29.4 35.6

Table 3: Summary of the MCMC parameter estimates of the extreme value
model in Case 1 with informative priors
The acceptance rates (A.R.) are in percentages of the total number of draws including
burn-in. The inefficiency factor (I.F.) is the sample average of 1,000 inefficiency factors

Para- True Mean Standard Median Min Max A.R. I.F.
meter Value Deviates
µ 9 6.9 0.02 6.9 6.8 7.0 63 182
σ 2.0 2.4 0.03 2.4 2.3 2.5 63 153
τ 105 9.5 · 104 2.1 · 103 1.0 · 105 9.1 · 104 1.3 · 105 68 194
β 104 1.2 · 104 6.8 · 103 1.1 · 104 4.6 · 103 4.5 · 104 68 25
ξ 0.9 0.97 0.07 0.98 0.66 1.11 72 13
λ 100 278 14 278 232 327 100 11

generating model (i.e., absence of model uncertainty), the concentrated priors lead to

a lower statistical uncertainty about the capital estimates. In the presence of model

uncertainty, however, the choice of concentrated priors may still lead to substantial biases

in capital estimates. The results demonstrate how difficult it is to achieve reasonable

safety limits around capital estimates, when fitting heavy–tailed samples with insufficient

tail losses. None of the results above led to bias and RMSE values that are less than 0.1

and 0.6, respectively.

The seemingly less biased capital estimates for the flat priors under Case 2 (i.e.,

presence of model uncertainty) are a result of the specifics on how we determine model

uncertainty. Specifically, the data generating process is a mixture of three lognormal

models, whereas the fitting model has a GDP tail and a lognormal body. Since the

tail of a lognormal distribution decays faster, the estimate of the tail parameter is also

lower. However, one also should note that the RMSE under the model uncertainty, 13.7,

is much higher than that under the absence of model uncertainty, 9.8.

Table 3 presents the average point estimates of the parameters, when applying the
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MCMC algorithm described Section 4 and the set of concentrated priors to fit M = 1, 000

samples generated from the extreme value model under Case 1. For each sample, the

MCMC estimate of an unknown parameter is the mean of J = 10, 000 MCMC draws

of that parameter (after a burn-in of j0 = 2, 000). Although the estimates of the body

parameters are quite off the true values, the effect of this bias on the capital estimate

is not dramatic. More importantly, the estimates of the GPD parameters are quite

accurate. The average estimate of the annual frequency, λ, is much higher than its true

value. This positive bias is a direct result of a negative bias in the mean estimate of µ.

The average number of tail losses is still close to 50.

Table 3 also reports the previously mentioned measures of efficacy of the MCMC

algorithm: the acceptance rates and the inefficiency factors. The inefficiency factors for

β and ξ are quite low, which is very important. The reason for having a high inefficiency

factor for τ is that, once the MCMC algorithm figures out where the separation point

(between body and tail) lies, it does not much stray away from that point. Therefore,

it is natural to obtain a high inefficiency factor for this parameter. All acceptance rates

are quite high and much higher than one would expect with the RWMH algorithm.12

6 Conclusion

In this paper, we have introduced a new estimation strategy for the extreme value ap-

proach to modeling operational risk. The proposed MCMC method gives rise to substan-

tially improved risk capital estimates as compared to conventional estimation methods.

Informative priors lower the probability of producing extreme parameter estimates that

lead to unrealistically large capital estimates. As a result, the approach leads to a sub-

stantial reduction in bias and root mean square error—two crucial measures of statistical

uncertainty about capital estimates. However, if priors are concentrated far from regions

where true parameter values lie, the statistical uncertainty around capital estimates can

still be substantial. Therefore, preference should to be given to “somewhat” informa-

tive flat priors—unless there is compelling evidence for the regions of concentration for

(some of) the parameters. Such evidence could for example, come from expert opinions,

possibly extracted via elicitation, or incorporating information from external data.

Future work should focus on understanding the limits of reasonably informative pri-

ors, developing practical procedures for direct and indirect elicitation, and exploring how

well the proposed method fits to real operational risk data.

12On average, it took less than five minutes to estimate each sample using a computer with Intel
Xeon 3GHz processor and 3GB of RAM.
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